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ABSTRACT

Analog devices have been used for processing the information on board the

satellites. Presently, digital devices are being used because they are economical and

flexible as compared to their analog counterparts. Several schemes of digital

transmission can be used depending on the data rate requirement of the user. An

economical scheme of transmission for small earth stations uses Single Channel Per

Carrier/Frequency Division Multiple Access (SCPC/FDMA) on the uplink and Time

Division Multiplexing (TDM) on the downlink. This is a typical communication service

offered to low data rate users in commercial mass market. These channels usually

pertain to either voice or data transmission.

An efficient digital demodulator architecture is provided for a large number of

low data rate users. A demodulator primarily consists of carrier, clock and data

recovery modules. This design uses principles of parallel processing, pipelinmg and

time sharing schemes to process large number of voice or data channels. It maintains

the optimum throughput which is derived from the designed architecture and from the

use of high speed components. The design is optimized for reduced power and area

requirements. This is essential for satellite applications. The design is also flexible in

processing a group of varying number of channels. The algorithms used are verified by

the use of a Computer Aided Software Engineering (CASE] tool called Block Oriented

System Simulator. The data flow, control circuitry and interface of the hardware

design is simulated in C language.

Also, a multiprocessor approach is provided to map, model and simulate the

demodulation algorithms mainly from a speed view point. A hypercube based

architecture implementation is provided for such a scheme of operation. The

hypercube structure and the demodulation models on hypercubes are simulated in Ada.

.°.
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Chapter I

INTRODUCTION

For reasons of flexlbflity and economy, digital implementation of the signal

processing hardware on board the communicaUon satellites is the current trend. This

is in contrast to the past when analog techniques and devices had been employed for

the transmission of data. The analog devices were bulky, occupied large volume and

consumed a large amount of power. There are several schemes for digital transmission

of information through the satellites. The adoption of a particular scheme of

transmission is based on the priority and importance given to some of the parameters

involved in a transmission scheme. The advances in digital technology for the satellite

communications aims at incorporaUng efficient schemes of transmission. It also

aims at processing a large number of channels yet reducing power and weight

requirements.

Depending on the bit rate requirement the users are classified into low, medium

and high data rate users. Low and medium data rate users can use small earth stations

with reduced costs and can ideally use the Single Channel Per Carrier/Frequency

Division Multiple Access (SCPC/FDMA) scheme of transmission on the uplink and

Time Division Multiplexing (TDM) on the downlink. The Time Division Multiple

Access (TDMA} scheme appears to be more attractive for high data rate users. Because of

a single carrier in TDMA the high power amplifier can operate in saturation. In

addition, problems due to intermodulaUon distortion can also be eliminated. It is also

possible to use several combinations of FDMA and TDMA schemes for transmitting the

channel information via the satellite. One of the hybrid schemes that is gaining

popularity is the MulU-Frequency Time Division MuIUplexing Access (MF-TDMA).
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One of the most economical schemes of transmission for low data rate users is

SCPC/FDMA on the uplink and TDM on the down link. There are several advantages in

using such a scheme for low data rate users, some of them being:

- Minimizes Effective Isotropic Radiated Power (EIRP) requirements.

- Eliminates ground network symbol synchronization.

- Makes full use of on board Traveling Wave Tube Amplifier (TWI'A) power.

- Overcomes double hop which needs a hub station and introduces delay

unacceptable for interactive voice and video communications.

-Reduces earth station complexity.

Despite these advantages, the major disadvantage involved in such a scheme of

transmission is the task of regenerating the transmitted data on board the satellite.

This needs extensive signal processing on board the satellite. In addition, the power

and hardware requirements may be very large for the desired high throughput.

The FDMA/TDM system conventionally consists of a Transmultiplexer

(TMUX), a bank of demodulators, baseband switch matrix, TDM multiplexer and a

modulator as shown in Figure 1.1. The FDMA signal is first down converted from RF to

IF. This wideband signal is downconverted and passed through an anti-aliasing filter,

which is required before digitization. The signal is then sampled by an A/D converter.

The digital signal at the output of the sampler contains information of all the SCPC

carriers that need to be separated. The SCPC/FDMA channels are input to the

Transmultiplexer (TMUX) which filters, separates and brings the channels to

baseband. The bank of parallel demodulators extract the digital data for all the

channels. This is followed by a baseband switch matrix which routes digital data to

each of the channels. The channel data

multiplexed, remodulated and transmitted

link.

are then buffered into contiguous blocks,

back to the earth stations on a TDM down
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The On Board Processing (OBP) system is called a Multi Carrier Demodulator

(MCD). An MCD has two operations, namely, demultiplexing and demodulating.

Oscillator

Figure 1.1:

Multi Carrier Demodulator

TransmulUplexer

-4" N

Bank of
Demodulators

.4 f-

FDMA/TDM System

i i Ii!1

,.._ -_,.
I _1 ml
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For the SCPC/FDMA scheme, much work has been done in the design of a Multi Carrier

Demodulator (MCD) [1-11]. Several demodulators comprise the demodulating part of

the MCD. Since a separate demodulator is suggested for each channel, the hardware

requirements are severe. Hence, it is difficult to implement the MCD with reduced size

and power requirements.

x.1 Proposed m eareh

A single hardware design is proposed for demodulating several channels

simultaneously. The goal is to achieve high performance by designing a dedicated

architecture. From a satellite point of view, reduced hardware and power requirements

are ideal for On Board Processing. This research project presents an implementation



of a singleshareddevice to demodulateall the demultiplexedSCPC/FDMAchannels.

This concept is realized by incorporating the parallel, pipeline and time multiplexing

techniques in the design. The time multiplexing saves on the hardware and the

parallel-pipelined architecture provides the required speed.Becauseof the use of a

single shared device, large savings in size and power are obtained while the

architecture designand the availability of high speedVLSI chips allows the required

throughput to be maintained. Flexibility is provided to processvarying number of

channels as long as it is not abovethe upper limit of the hardwaredesign. Also a

schemefor varying bit rate voice or data channelsis given.It providesthe flexibility to

the user in terms of choosingbetweena higher number of low bit rate channels or a

lower number of high bit rate channels. Hence this design is given the acronym

PRODEM(PROgrammableDEModulator}. The design is optimized for maintaining

maximum bit rate. Also, if higher throughput is desired, severalPRODEMscan be

suitably used in parallel.

Simulationsare carriedout at different stagesof this design. Thedemodulation

algorithms aresimulated as part of a MODEM.Theinput and the output bit streams

ofthe MODEM are observed to check the accuracy ofthe operations.This simulation is

done using a signal processing CASE {Computer Aided Software Engineering} tool

called BOSS {Block Oriented System Simulator}. Also, the hardware design is

simulated with the data flow among the units and the modules. The controlcircuitry

and interfaceofthe modules are alsosimulated.

Also, speedup in the demodulation algorithm is easily achieved by using

several processors of a multiprocessor system. One such multiprocessor sytem is a

hypercube. A hypercube with n dimensions has 2n processors. For example, the

demodulation algorithm is divided into smaller units and is mapped onto a three

dimensional hypercube consistingof eightprocessors. Each processor operates only on

its assigned task. This enhances the performance of the system by providing



considerable speedup. The creation and assignment of the tasks to the processors plays

a crucial role in the performance of the hypercubes.

A hypercube architecture has fewer interprocessor communications and data

transfer problems as compared to a time shared bus architecture. Also, in its class of

multiprocessors, it is a tradeoff between its equivalent ring connected and completely

connected topologies. Hence it is chosen for the simulation of our demodulation models

for several channels. The algorithm models are simulated in Ada because it is easy to

implement the parameters of a hypercube. Note that this approach is considered

primarily for providing a speedup. Since the hypercubes have severe power and

hardware requirements, it is not a solution for On Board Processing. However, this

approach could be used for high speed demodulation needs of the earth stations. Using

TDM on the down link will require all receiving earth stations to have relatively high

speed demodulating requirements, hence this multiprocessor approach could be an

attractive solution to the high speed requirement of the earth stations.

In Chapter 2, some of the existing satellite access techniques are reviewed and

an overview of the parallel processing schemes is provided. Chapter 3 deals with the

analysis of the carrier, timing and data recovery algorithms of the Multi Carrier

Demodulator. Simulation of the algorithms is provided in this chapter. Chapter 4 deals

with the hardware design from an on board processing stand point. The simulation of

the hardware design is also discussed. The hypercube models and simulation of the

demodulation algorithms for these models are provided in Chapter 5. Conclusions and

future work are discussed in Chapter 6.





Chapter_

SYSTEMBACKGROUNDANDPARALI2_PROCESSINGOVERVIEW

2, I Multlple _ccess Techniques

The users can access the satellite by multiplexing the data in frequency, time, or

in code. Multiple access schemes have been used effectively and efficiently in the

satellites. Some of the commonly used schemes are Frequency Division Multiple

Access (FDMA), Time Division Multiple Access (TDMA), and Code Division Multiple

Access (CDMA). In FDMA, each uplink RF carrier occupies a defined frequency slot and

is assigned a specific bandwidth with a small guard band for separation of one carrier

from another. The satellite receives all the carriers in its bandwidth, amplifies them

and retransmits them back to the earth. The receiving station selects the desired carrier

that contains its relevant message by appropriately choosing its allotted frequency.

The main advantage of the FDMA access is that network synchronization is not

required. It is used mostly by low data rate users.

The TDMA scheme uses a single carrier which is shared by all the users in time.

It operates in burst mode such that the transmissions from all stations arrive at the

satellite transponder successively. At any time each user has access to the entire

transponder. The transmission timings of various bursts are carefuUy synchronized so

that the bursts arriving at the sateUite transponder from a group of users in the

network are closely spaced in time but do not overlap. The satellite transponder

receives one burst at a time, amplifies it and retransmits it back to the earth. Every

earth station in the network will receive all the bursts of transmission from all the

stations but selects only those that are relevant. A distinct advantage of TDMA over

FDMA is that it uses a single carrier which avoids intermodulaUon distortion. Thus the

satellite amplifier can operate in saturation to get the maximum output power.

However, this scheme requires network synchronization.

6
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The CDMA scheme has all uplink signals occupying the full frequency

allocation at the same time. Each channel has its own pseudo-random code which

distinguishes it from the other channels. The codes are chosen from an orthogonal set

and are used to separate the desired signals. This scheme is primarily used in military

applications for security purposes. The commercial applications of CDMA are

beginning to emerge for low speed data communications. These schemes and several

other hybrid schemes are discussed in detail in [15].

2.2 Satemte SFstem Users

The various satellite users can be divided into three main categories depending

on the bit rate they need for the transmission. They are the low, medium and high data

rate users as mentioned in [9].

1. Low Data Rate (LDR) users require one telephone channel or less (16/32 Kbps).

LDR can be arbitrarily classified as any traffic having bit rate in the range of 1 Kbps to

100 Kbps. Under this category, signals can be considered carrying "telematic" services,

as Teletex, Videotex, Low/Medium Speed Facsimile, Slow-Scan Video, wideband PCM

"toll quality" telephony (64 Kbps) or reduced rate "talk quality" PCM telephony (less

than 10 Kbps).

2. Medium Data Rate (MDR) users require up to 10 Mbps (e.g., digital T1 signals

at 1.544 Mbps or PCM hierrarchic levels as 2.048 Mbps or 8.448 Mbps. High speed

Facsimile, Videophone, and Video conference are the main applications for this bit

rate range.

3. High Data Rate (HDR) users requirement ranges from 10 Mbps to 150/200

Mbps (or more) which is considered today an upper practical limit to the per-

transponder capacity. This range of data rate is essentially devoted to multiplexed voice

circuitsdigital television or HDTV planned for broadband ISDN at 155 Mbps. Each high

data rate user may require one or more transponders. A Time Division Multiple Access



- 8

(TDMA) system or a single access may be used for such HDR systems, needing no

particular improvement of today's technology. On the other hand, LDR and MDR

signals may be processed in several different ways to reduce the complexity of the user

terminal or on board hardware. It could also be improved from a speed and power

requirement view point. In this research effort, we shall be concerned with the

implementation of LDR/MDR system design only.

2.2.1 LDR/MDR By_mm C_u_Umm

2.2.1.1 SCPC/FDMA Approach

The use of Single Channel Per Carrier (SCPC) technique using a Frequency

Division Multiple Access (FDMA) on the uplink and the downlink offers the desirable

feature to design the earth station EIRP for the user capacity. However, a major problem

with the FDMA systems is the presence of intermodulation products in the composite

signal bandwidth generated by the amplification of multiple carriers by a common

Traveling Wave Tube Amplifier (TWTA). The TWTA in the satellite transponder exhibits

both amplitude and phase nonlinearity. As the number of carriers increases, it is

necessary to operate the TWTA near saturation in order to supply the required power

per carrier to reduce the effect of downlink thermal noise. But near saturation, the

input/output amplitude transfer characteristic of the TWTA is highly nonlinear.

Consequently the level of intermodulation products is increased, which effects the

overall performance. Thus the TWTA must be backed off from saturation and operated

in the quasi-linear mode to obtain an acceptable value of the carrier-to-

intermodulation product ratios.

At the optimum backoff (up to 6 dB at the TWTA output) the reduction of the

satellite EIRP and the residual intermodulation products reduce the downlink carrier-

to-noise ratio (C/N or Eb/No), typically 2-5 dB with respect to single carrier operation.

It is possible to reduce the average output power by 50% or more to reduce the



intermodulation products to an acceptablelevelwith a high density of input signals.

Howeverthis will cause problems at the receiver,becausethe downlink signal with

reduced carrier-to-noise ratio cannot be received by earth stations with small

antennae.

2.2.1.2 FDMA/TDMAApproach (Double Hop)

The best features of both the FDMA and the TDMA could be obtained using a

modulation conversion on board a regenerative satellite or on ground. For modulation

conversion on ground the small earth stations are connected using a double hop

through a large Central Processing Station (CPS). In such a configuration, the first hop

is from the sman capacity stations to a large CPS via the satellite. It uses SCPC/FDMA

scheme of transmission as shown in Figure 2.1. The CPS on the ground demodulates

the received SCPC signals and remodulates on a single carrier and retransmits back to

the satellite. This is the second hop from the CPS to the small capacity users on a TDMA

format. Therefore the transmitting and receiving stations are linked by the satellite.

The CPS has a forward link in FDMA and the return llnk in TDMA.

By using this scheme the users access the satellite freely by SCPC/FDMA uplink.

The low data rate users are coUectively retransmitted as high data rate using the TDMA

scheme by the CPS. An advantage of this scheme is the reduction of cost for low data

rate users. For these low bit rate users, the cost involved in using TDMA in the uplink

is impractical. In this scheme, this is avoided by using FDMA on the uplink and by a

FDMA/TDMA conversion using a CPS. Therefore, the cost involved in using TDMA can

be distributed among all its users. Yet another advantage is that, due to the increased

dimension of the CPS antenna, the satellite can transmit the SCPC signals at a lower

carrier power. Due to this fact the HPA power on board and the satellite EIRP are

reduced. Therefore the RF power usage on the satellite is minimized.



- I0

In the second hop, the TDMA transmission can achieve efficiencies in satellite

power utflizatlon of 90% or more compared to the 50% loss in the satellite average

output power that is typical of FDMA operation. A disadvantage in this scheme is an

introduction of excessive delays due to the double transmission. Note that for most

applications of voice and interactive video transmission this delay is not acceptable.

Also the net throughput of the satellite is reduced as it is accessed twice for the

transmission of the same data.

SATELt.CT_

FDMA

TDMA

FD MA

_ure 2.1: SCPC/FDMA Double Hop Scheme

2.2.1.3 FI)MMTDM Approach (Multi Carrier Demodulation)

The disadvantages of the double hop scheme can be overcome if the burden of the

processing done by the CPS is transferred on board the satellite. The trend has been to



use regenerativerepeatersfor digital transmission. In a regenerating transponder the

digital signal is demodulated and remodulated within the transponder itself. This

scheme separates the uplink and the downlink into independent paths. This will

require baseband processing and frequency conversion of the modulation on board the

satellite. Low power, narrow band, digitally modulated carriers operating on a

frequency division basis on the upllnk could be demodulated on board the satellite. The

individual bit streams can then be combined on a down link using Time Division

Multiplexing (TDM). Also the continuous wave transmission in the FDMA mode has its

advantages. Due to the continuous transmission of the RF power, the demodulators on

board do not have to acquire symbol timing and phase recovery every time data are

transmitted. Instead the demodulators have to track the symbol timing and the carrier

phase to keep it from drifting. Thus the bit energy requirement is reduced. Due to this

reason the earth stations can transmit signals with a low C/N (yet it will be sufficient

for the accurate operation of the demodulators). Therefore the earth station EIRP, the

HPA power and the antenna size are reduced. At the receiving end, the signals received

are in a TDM mode. The single carrier characteristic of the TDM mode allows satellite

transponder operation in saturation. This results in an efficient utilization of the

onboard RF transmit power.

Thus in satellite communication systems incorporating smaU earth stations,

the use of SCPC/FDMA on the uplink, regeneration and remodulation of the user data

on board the sateUite and use of TDM on the downlink are significantly effective in

improving the satellite transponder utflization and reducing the required EIRP in both

the satellites and earth stations.

As discussed, it is observed that the system complexity on board using

multicarrier demodulation makes such a regenerative system rather attractive and

flexible. However it is not easy to implement on board MCD with low power and reduced

hardware yet provide the system with a computational efficiency. Some investigations
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for on board processing have been carried out in various technologies such as Surface

Acoustic Waves (SAW), acousto-optical techniques and baseband digital signal

processing [9]. In this research, an efficient design is proposed using the baseband

digital signal processing scheme. This design provides a low power and hardware

complexity solution to the on board conversion of the FDMA/TDM system.

2.3 Parallel Processing

Advances in many fields had their impact on the design and development of

advanced computing technologies. Some technologies need millions of instrucUons to

be computed in a fraction of time. This relates to providing the user with a machine

that supports high Million Instructions Per Second (MIPSI. There are some real-time

applications that need this speed for an accurate operation of the system. Others need

this speed for running the simulations that ordinarily take hours and days to provide

results. This could be a waste of valuable research time. Yet others need this

computational power simply because the computation time is more than the time

allowed for computations. Parallel processing aims at providing maximum possible

speedup to the end user. Some of the applications which use parallel processing are

given in Table 2.1. A comprehensive study of these applications can be found in [26].

Any field that needs a high speed computation can find a solution in parallel

processing.

Parallel processing is a means of computing using several processors or

processing units. Its objective is centered around increasing the speed of computation

which is achieved by using multiple units. The algorithm needing a speed up is

appropriately partitioned and mapped onto these multiple units that operate either

simultaneously or in a pipeline. This is achieved by observing the partitions of the

algorithms which can be done simultaneously and those which can be done in

overlapped time intervals. The former is called parallelism and the latter is called
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pipelining. In contrast to sequential processing, parallel processing demands

concurrent execution of many events in the system. Special purpose dedicated

hardware, advanced computer architectures, and supercomputers are based on the

principles involved in parallel processing. The application of these architectures and

algorithms [24-30] need the underlying principles involved in hardware and software

structures and close interactions between algorithms and optimum allocation of the

machine resources in solving large scale computing programs.

Table 2.1: Some Fields That Need Parallel Processing

Modeling and Simulation
Weather forecasting
Oceanography and astrophysics
Socioeconomics and government use

Engineering design and automation
Finite element analysis
Computational aerodynamics
Artificial Intelligence and automation
Remote sensing applications
Image and signal processing
Satellite communications

Energy resources exploration
Seismic exploration
Reservoir modelling
Plasma fusion power
Nuclear reactorsafety

Medical, military and basic research
Computer Assisted Tomography (CAT scan}
Genetic engineering
Weapon research and defense
Space research
Basic research problems

2.3.1 Issues and Concerns in Parallel/Pipeline Processing

Parallel processing of the algorithms can be achieved in many cases where the

algorithms can be divided in parallel. The problem is to identify the portions of the

algorithm that can efficiently use more than one processor or a hardware unit. The

effectiveness comes from the identification of the problem that lends itself to the
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parallelism, allocation of the algorithm, and mapping it on to a suitable architecture.

The algorithms could be suitably mapped onto the available architectures by

analyzing the characteristics of the algorithms and considering the parameters that

effect the performance of the mapped algorithms on the architectures. One has to

exploit the organization of the memory and architecture to attain a high speed as

compared to a sequential solution of the same.

If the algorithm cannot be broken down into parallel units, it can be divided

into units which are pipelined. This needs suitable interprocessor communication and

synchronization techniques. Interprocessor communication pertains to an accurate

transfer of the data from one processor to another. Based on the architectures either it

is very simple to implement as in a hypercube or is complicated and affects the

performance if the architecture is a time-shared common bus architecture.

Synchronization is achieved mainly for processors to operate in conjunction with one

another. The processors operate in such a manner that if any processor completes its

job earlier than the others, it waits for others to come to its level so as to ensure

accurate operation on the shared data. This ensures a synchronized performance of all

the processors in the system. In a hardware architecture, synchronization will relate to

transfer of data at the right instants of time. It may also relate to interfacing several

interacting modules.
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Chapter HI

ALGORITHM ANALYSIS

Demodulation algorithms pertain to the recovery of carrier, data and timing.

The algorithms are analyzed from a view point of providing implementations for a

suitable hardware design. The analysis in terms of the interdependency of the data flow

in the algorithms is noted. This study aims at developing a dedicated architecture. It is

achieved by performing the data dependency analysis on the algorithm. The algorithm

is examined for data dependencies and is appropriately partitioned. The underlying

principle is to map the independent sections of the algorithm onto computational units

operating in parallel and the dependent sections onto units operating in a pipeline [17-

18]. This is implemented within the units of the modules and also among the modules.

A digital implementation of a demodulator consists of several modules which

operate in cooperation with each other. A Quadrature Phase Shift Keying (QPSK)

modulation scheme is used in this demodulator. A block diagram of a QPSK

demodulator with its interfacing modules is shown in Figure 3.1. The interpolator

provides samples of the incoming symbols at the precise rate of two samples per

symbol, and at the precise positions of the symbol which are at its peak and crossover

points. The interpolator is needed to properly sample the symbols needed at the input

of the demodulator. This is because the outputs from the demultiplexer are not suitable

for the demodulator where a fixed integer number of samples are required. The carrier

recovery module estimates the carrier phase offset. This phase offset is introduced in

the system due to the atmospheric disturbances, Doppler shift, etc. The clock recovery

module extracts the correction for the timing information of the channels. This is

required to ensure accurate sampling instances at the maximum eye opening positions.

There are several algorithms for the recovery of carrier and clock. The non-linear
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estimation technique proposed by Viterbi and Viterbi [12] for the carrier recovery and

the clock estimation method proposed by Gardner [13] have been chosenin our

implementation. The carrier recovery algorithm provides a good estimate of the phase

and is not very sensitive to the finite arithmetic implementation which has a bearing

on the word-length. It requires a short acquisition time, and it does not have many

feedback loops which are characteristic of certain other algorithms. These attractive

features make it suitable for the Joint recovery of all the channels. The clock recovery

algorithm is independent of the carrier phase and also offers some attractive features

for efficient implementation for multiple channels. Due to the atmospheric

disturbances, propagation delays and the Doppler shift effects present in satellite

communication, it is essential to continuously track the phase and timing estimates.

DEMULTIPLEXER

INTERPOLATOR ==_
CARRIER
REOETCB_

TIMING I DATA
_y RE:OENERY

Figure 3. I: QPSK Demodulator

3.1 Carrier Recovery Algorithm

The carrier recovery is based on the implementation of the Viterbi algorithm in

the proposed MCD structure by E. Del Re and R. Fantacci [6]. The carrier phase of the
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F_a-e 3.2: Biased Carrier Phase Estimation

incoming samples can be estimated continuously or periodically. The continuous

estimate is obviously computation-intensive but is an unbiased estimate.

Alternatively, an estimate can be made at the mid-interval symbol with N symbols

preceding it and N symbols succeeding it where N is the number of contiguous symbols

of the same user. The estimation interval is then 2N+ I. This symmetric estimation of

the carrier phase is a biased estimate. This bias depends on the position of the symbol

from the mid-interval symbol as shown in Figure 3.2. The phase is unbiased for the

mid-interval symbol and is a linear funcUon of the position of the symbols away from

it. This bias is maximum for the symbols at the end points of the estimation interval.

The operaUons that are performed in the carrier recovery algorithm are given

in this section. The flowchart for the carrier recovery algorithm is as shown in Figure

3.3. Let T and Te be the duration of the symbol and the estimation intervals,

respectively. By our earlier discussion, these parameters are related by the equation
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F_a'e 3.3:
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Carrier Recovery
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Algorithm Flowchart
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(2N+I)T = Te. The inputs to the phase recovery are the In-phase and the quadrature-

phase samples. Let the complex sample input be of the form:

X (n) = In + J Qn (3.1)

For PSK modulation.

In = An cos4_c - Bn sin_c (3.2)

Qn = An sinoc + Bn cosec (3.3)

where _c is the carrier phase and An and Bn are the in-phase and quadrature-phase

sampled data waveforms. These equations can also be written as:

In = Rncos(_(2k+l)/m + Oc) = Rncos _rl

Qn = Rn sin(_(2k+ 1)/m + _c ) = Rn sin on

where Rn = _/An 2 + Bn 2

On = _(2k+ 1)/m + Oc (3.4)

m = number of phases
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k = 0,1,2 ....... m-1.

Note that Rn is also equal to _/In 2 + Qn 2 and On is tan- l(Qn/in). Equation (3. i) can also

be written in the polar form as:

X (nl = Rn. el_ (3.5)

A non-linear transformation is performed to eliminate the modulation information

from _rn. The new transformed vector is given by:

X'(n) = r(Rn).ex p (Jm0n).

= F(Rnl.ex p _mOc). from (3.4)

The function F is an arbitrary non-linear operator. The non-linear operation is

used to remove the modulation information from the signal. The next step performed in

the recovery of the carrier phase is to convert the polar form back to the rectangular

form. This gives:

F(R n).exp (JmOc)= In' +JQn' (3.6)

To obtain an estimate Oc of o c over the estimation interval Te, mean vector values are

needed. These are obtained by:

In" = (I/(2N+I))_I n' n= -N to n= N (3.7)

Qn" = (1/(2N+I))_ Qn' n= -N to n= N (3.8)

The phase estimate is obtained as

_c = I/m tan- I (Qn,,/In, _ (3.9)

The operations performed for obtaining In' and Qn' are rectangular to polar

transformation, a phase multiplication by m, an arbitrary non-linear transformation

on R n and finally a polar to rectangular transformation. In the hardware

implementation, the values of In' and Qn' can be preprogrammed and stored in a look

up table for any given In and Qn values.

All the samples present in the estimation interval are summed and then

averaged. The mean vector values In" and Qn" are obtained. Corresponding to these

values, a 1/m tan-1 operation obtains the phase offset. The sine and cosine values of
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the phase output are then computed. These values are output from this block and are

utilized appropriately by the data recovery module. Note that multiplying the phase by

m and finally dividing the tan-1 function by m, gives rise to a m fold ambiguity in the

phase estimate. However, in a practical situation this problem is solved by coding the

data transitions rather than the data themselves (differential coding) and by

performing differential decoding at the receiver. It could also be solved by considering

all the positive and negative values of In" and Qn" and creating a look up table for all

these combinations.

3.2 Timing Recovery A_orithm

The clock recovery module extracts the timing information for each channel. A

general structure of the timing recovery mechanism is shown in Figure 3.4. Samples

from the I and Q channels are input to the timing error detector. The timing error

information is used to update the timing instances by the timing error corrector. The

output of the timing error corrector drives the interpolator. After this feedback input

the interpolator outputs correctly sampled data. Figure 3.5 shows typical sample

points used in the estimation of the tinting error information. Samples In and In- 1 are

at the peak points and In-I/2 is at the cross over point. A transition between the

samples should have a zero mid-way sample. A non-zero value indicates an error

which has to be corrected. For this purpose, the successive samples are compared. The

difference between the peak values will provide the slope information. The product of

the slope information and the midway sample provides the timing information. A

timing correction is provided only when a transition exists. The timing error Ti for the

I - channel is:

Ti = [In- I/2 {In - In- I}] (3. I0)

The flowchart of the algorithm is shown in Figure 3.6. Clearly the amplitude of

the mid sample In- 1/2 is proportional to the timing error Ti. The difference of the peak
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sample values {In - In-1] magnifies the amplitude of the sample at the crossover

point. In fact, instead of using the actual values of the peak samples, their sign values

can also be used. This will also simplify hardware implementation. Note that when

there is no transition between the adjacent samples, the timing error is zero. Also the

sign of the timing error is used to determine the direction of the timing correction. For

a general PSK modulation, samples from both the I and Q channels are used to obtain

the timing error which is given by

Un =Ti+Tq

=In- 1/2.{ In- In-1 } + Qn-1/2.{ Qn- Qn-1} (3.11)

The cumulative timing error is given by
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F_gure 3.5: TLrning Error Estimation

Wn = Wn- l+Un (3.12)

The error value is used by the timing error corrector to obtain the correct

updated timing. This updated output is needed by the interpolator filter for the

correction of the sampling instances. The correcUon keeps the timing instances free of

any lead-lag erroneous sampling. The various possible combinations of sampling are

shown in Figure 3.7. The ideal sampling would be to obtain the optimum peak and the

zero-crossing values of the samples.
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Data Demodulation Scheme

3.3 Data Recovery Algorithm

The demodulation process for the samples begins once the phase estimate is

available. The data demodulation scheme is similar to [1 1] and is shown in Figure 3.8.

A shift register is required to store 2N+ 1 samples. This is because 2N+ I samples are used

to estimate the phase. During this time, demodulation cannot be carried out. So the

sampled data are buffered. Demodulation can begin only after the phase estimate is

available. This will result in an initial delay of 2N+ 1 symbols in the demodulation

process. Using equations (3.2) and (3.3) to compute An and Bn shown in Figure 3.8, the

following results are obtained.

=In. cos _c + Qn" sin _c (3.13)

=An. cos _c cosec - Bn. sinoc cos _c + An. sin _c sin_c + Bn. cosec sin _c

=An. cos {oc- _c ) - Bn" sin {_c" _c ) {3.14)

_n =Qn" cos _c - In" sin _c (3.15)



26

=A n.sinoc cos _c + Bn. cos_ cos _c -An. cosOc sin_c + Bn- sinocsin_c

=A n. sin (oc-_c.}+ Bn.cos (oc-_c.} {3.16)

when _c is the estimate of oc. Equation (3.14) provides a close estimate of the A n

symbol and equation {3.16}provides a close estimateofthe symbol Bn.

3.4 MODEM Simulation for Demodulation

A simulation of the demodulation algorithms is performed using a CASE tool

called Block Oriented System Simulator (BOSS). The carrier and data algorithms are

verified for a MODEM with a QPSK scheme of modulation as shown in Figure 3.9. The

timing algorithm needed the interpolator algorithms for verification and hence was

not simulated.

3.9: Software Model For The Simulation Of MODEM

Several MODEMs have been simulated with varying parameters in an extensive

study [16]. From this library, a QPSK MODEM is selected for the purpose of verifying

our algorithms. The MODEM has a random input datum {0 or 1) available at every clock
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cycle generated by the block RAN DATA as shown in Figure 3.9. This is mapped into the

four different constellations of QPSK by the block SIGNAL MAPPER which uses two

inputs to represent any of the four positions. The modulator uses this input to

modulate the input information to the four different phases associated with these

positions. The block PE2* gets an input which is a combination of the modulated phase

and the phase jitter. Th multipath fading channel block is used to generate a phase

disturbance and the const-amp block outputs this signal which has only a varying

phase value. In reality, this is obtained from the disturbance and Doppler shift, etc.

Therefore phase Jitter along with the phase of the actual data from the modulator are

input to the phase estimator block. This unit rotates out the modulated phase so that a

phase which is purely related to the disturbance is extracted. It is used by the

demodulator block PEDEMI* to extract the original modulated phase. A reverse

process is done at the receiver to decide on the bits and BER count block checks for the

bit error rate by comparing the input and the output bit streams. The programs written

for the blocks CONST-AMP*, PE2* and PEDEMI* are listed in Appendix A.

Several parts of the MODEM are probed to examine the changes in the signal

during this process. The signal at the output of the modulator block is shown in Figure

3.10. This corresponds to the modulated phase levels. The output of the phase Jitter is

shown in Figure 3.11 which is the simulation of the disturbance introduced onto the

signal. The combination of these outputs results in the actual input signal to the

demodulator. This input signal to the demodulator block PEDEM 1" is shown in Figure

3.12. The carrier phase is recovered by the PE2* block. It rotates out the modulation and

extracts the carrier phase as shown in Figure 3.13. The demodulator uses this

extracted phase to determine the actual phase levels. These levels correspond to the

original information which has been modulated. The output of the demodulator block

PEDEMI* is shown in Figure 3.14. The input and the output bit streams are shown in

Figure 3.15. It is seen that the two bit streams match very closely and thus the accurate
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operation of the demodulation algorithms m a MODEM is verified. The simulation is

test run for about 10,000 bits and the BER is noted. The listing of the programs with

the Bit Error Rate (BER) are given in Appendix A.



Chapter IV

M DEMODULATOR DESIGN METHODOLOGY AND SYSTEM SIMULATION

A hardware design is developed for demodulating several voice

channels pertaining to the SCPC/FDMA system. This design incorporates pipelining

and parallel processing techniques. The implementation of these techniques in the

hardware design increases the performance of the system [22, 23]. The speedup

achieved can then be utilized effectively to process a large number of channels which

are multiplexed. The design attempts to provide a proof-of-concept for processing a

large number of channels.

4.1Preview ToThe DeslgnOf1"ae Dmnodulat_

The A/D sampler in Figure 1.1 is used to sample the received FDMA signal. The

signal at the output of the sampler contains information of the N SCPC channels. If

each channel has a uniform spacing of Af, then the combined bandwidth will be F=

NX.Af. The sampler will have to operate at least at the rate of (2F) to accurately retrieve

the channel information. However, if complex sampling is performed, the sampler can

operate at a reduced rate R=(4F). The filter bank and the FFT processor of the

Transmultiplexer (TMUX) and the bank of demodulators need to operate at this rate for

processing the data.

The bank of demodulators operate at the rate at which the samples are input to

each demodulator. Since N demodulators are used corresponding to N channels, each

demodulator operates at a reduced rate given by {N'R) time units. This usually does not

keep the hardware units of the demodulator operational at every clock cycle of the

system. The process of keeping the units inactive for several clock cycles results in an

ineffective use of the hardware resources. To overcome this drawback, a single

31
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hardware device is proposed to demodulate all the channels. The hardware units of this

device will be operational at every clock cycle. The channels will be multiplexed and

share the hardware resources of this device. Hence considerable savings in hardware

and power are achieved by designing this single multiplexed demodulator. Once the

channel information of this device is processed, it will be output at a high speed of R

time units. This high speed output will take NR time units for processing N channels.

This is equivalent to the bank of demodulators which also take NR time units to

process N channels. This is because of the slower processing time of NR time units by

each of the N demodulators.

4.2 Design Of Demodulation Modules

The demodulation process needs to recover the carrier and data from the input

samples corresponding to various channels. Timing recovery is needed for tracking the

positions of the samples and is used by the interpolator. Each of the modules for

carrier, timing and data recovery is designed to operate according to the equations

given in Chapter 3. In this section a multiplexed design for storage, carrier, data and

timing recovery modules is presented. A case study of 800 channels is presented for an

easier understanding of the design.

4.2. I Multi_ _ Recovery ]h_3dule (MCR]_

A Multiplexed Carrier Recovery Module (MCRM) is designed to obtain the carrier

phase for each of the channels. Samples of several channels are input serially to this

module. At the same time these samples are also input to the Multiplexed RAM Buffer

for Samples (MRBS). The MRBS stores these samples to be operated on later by the

phase recovered information of the MCRM. The output of the MCRM module will be

needed by the Multiplexed Data Recovery Module (MDRM).
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4.2. I. I I_CI_M Operatlon8

The in-phase and quadrature-phase samples of the channels are input to the

Multiplexed Carrier Recovery Module (MCRM) as shown in Figure 4.1. The input

samples In and Qn are transformed to a vector according to the equations (3. I) and

(3.6) by using a look up table. The pre-programmed values of In' and Qn' corresponding

to the transformation of the input samples In and Qn according to equation (3.4) are

stored in the Input ROM (IR). The values of In' and Qn' samples are accumulated in the

Accumulation RAMs (AR). An Address Generator for Samples (AGS) supplies the

addresses to the AR according to the channel numbers for storing the values of In' and

Qn'. The samples of various channels are stored in their allotted location of the RAMs.

The successive samples over an interval length of 2N (where 2N is the number of

samples considered for the accumulation of samples for each channel) are

accumulated for each of the channels. The accumulated result needs to be divided by 2N

to obtain an average vector (In" and Qn'3. This is achieved by reading all the bits needed

to represent In' and Qn' except for the last Log2(2N) bits. In" and Qn" are used as input

to obtain the phase estimate by a 1/m tan-I operation. Sine and cosine values of this

phase are obtained for each unique value of phase. In" and Qn" are mapped to unique

values of sine and cosine stored in the form of a single look up table in Output ROM (OR).

The sine and cosine values are then input to a Storage RAM (SR). The SR stores the sine

and cosine values corresponding to various channels in their unique locations. Sine

and cosine values stored at the first location of the SR are used only by samples of the

first channel. The second set of sine and cosine values stored in the second location of

the SR are used only by the samples of the second channel. Similarly, the nth set of sine

and cosine values are used only by the samples of the nth channel. The operations are

carried out such that the nth sine and cosine values operate on the samples of the nth

channel of the MRBS. This is followed by (n+ l)th values operating on the samples of the

(n+ 1)th channel until the first set of samples of all the channels are processed. Then,
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Figure 4.1: Multlp]exed Carrier Recovery Module (MCRM)
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the new set of samples from the MRBS use the same set of sine-cosine values. This

process is repeated for 2N sets, after which time a new set of sine cosines overwrite the

old set in the SI_

4.2.1.2 Wordlength Of Quantized Samples

The input samples for the in-phase and the quadrature-phase are assumed to be

eight bits wide. Together they form a 16 bit data input to the system. This 16 bit data

will act as an address to the ROMs for a look up operation. This 16 bit input data (or

address) will then require a 64KX16 ROM for the look up table. Also, the 16-bit data

output from the ROM is viewed as a combination of two 8-bit data. The size of the ROM

is proportional to the number of locations allowed for the input address. Therefore a

64KX16 IR and OR are necessary for a look up operation. The size of the RAMs

physically limit the number of channels that can be processed. A 1KX12 AR will be

sufficient to accomodate the accumulated 16 successive 8-bit samples for 1024

channels. A 64KX16 OR is used to store the look up table for the sine and cosine values

which are 8 bits each. The OR reads the first 8 most significant bits out of the possible

12 bits at its input. This amounts to a division by 16. A 4-bit counter is used as an

Address Generator for Channels (AGC). It counts to 16 which corresponds to 16 sets of

samples with each set representing samples of all the channels. A 10 bit Address

Generator for Samples (AGS} will be necessary to count up to 1024 unique channel

locations. A 12-bit adder is used for the accumulation of 8-bit samples.

4.2.1.3 Comtrol Circu/try And Data Flow In MCRM

Latches are used in the design to synchronize the data flow through various

units. All the data latches are negative edge triggered. Therefore the data present at their

input are latched at the negative edge of the clock. The AGS is used to appropriately

address the desired locations of the RAMs. AGC is mainly used for control of data flow

in the module. The terminal count of AGS is used as a clock to the AGC. AGS is a counter
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for the total number of channels in the system. AGC counts the number of complete sets

of samples for all the channels. This is also the estimation period for the extraction of

carrier phase (in this design, 2N=16). The control circuitry for the hardware design of

MCRM is shown in Figure 4.1.

An input sample at the IR appears at the AR during the second clock cycle

because of the delay due to two latches. For an accurate address to appear at the AR after

a single clock delay, the address from the AGS has to be delayed by a latch. The AR

accumulates samples over an estimation interval of 2N cycles. After this stage, the

accumulated values should not be read for one whole cycle. To achieve this purpose, a

Read Enable (I_) is not provided to the AR during this cycle. However, a Write Enable

(WE) is provided which will overwrite the accumulated samples of the previous 2N cycles

with a fresh set of samples. The logic requirements for AR are given in Table 4.1. Tccd

denotes the terminal count from the AGC. CLK and CLK denote the clock and the clock

bar used in the system. WE and I_ denote the write enable and read enable of

Accumulation RAM (AR).

Table 4.1 Logic for Accumulation RAM

Tccd CI_ CLK WE I_ COMMENTS

0 0 1 0 1 Read disable

0 1 0 1 0 Read enable

1 0 I 0 I Read disable

1 1 0 1 1 Read disable

The logic needed to obtain a Read Enable (l_) for the AR is achieved by an OR

gate with Tccd and CLB as the inputs. This could have been achieved in a better way by

using sequential logic as opposed to directly gating the clock onto combinational logic.

The CLK is used for providing WE for the AR. In each clock cycle, a read operation is
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m

followed by a write operation. The RE to AR is not provided when Tccd is I. The Tccd

remains I only for one particular clock cycle of AGC. Therefore, the _ to AR is not

provided during this cycle. Also, a latch delay is provided for the logic to appear at the

AR. This is to synchronize with the data available for read operation at the AR. Hence

the RE is denied for AR for one cycle when all the incoming new samples overwrite the

existing accumulated sample values.

In each clock cycle, the SR does a write operation followed by a read operation. A

WE to SR is provided only when the accurate sine-cosine values are available. Also, WE

is available only for one particular AGC cycle during which time all the values are

stored. Its Write Enable (WE ] is provided only when the output of OR corresponds to the

sine-cosine of the accumulated samples. A WE is provided to the SR only after 15 AGC

cycles. After this time, the Terminal Count of the AGC (Tccd) is output for one whole

AGC cycle. A three latch delay is provided for Tccd to appear at _ of SR. This

corresponds to the delay in the input sample which will take three AGS clock cycles to

appear at the input of SR from the time it is input to MCRM. The address to SR is also

delayed by three clocks to account for the same delay. This delay is needed to address

the appropriate desired locations of the SR. The logic requirement for the SR is given

in Table 4.2. The WE and RE correspond to the Write Enable and Read Enable of the

SR.

Table 4.2: Logic for Storage RAM

Tccd CLK CLK RE WE COMMENTS

0 0 1 0 1 Write disable

0 1 0 1 1 Write disable

1 0 1 0 0 Write enable

1 1 0 1 1 Write disable
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The logic needed to provide the Write Enable to the SR is designed by using Tccd

and CLK as inputs to a NAND gate. The WE will be provided exactly for one particular

AGC clock cycle (when Tccd=l) during which the sine-cosine values pertaining to all the

channels are available. It is then disabled until the next set of values of sine-cosine are

available. At this stage, the Tccd goes high again and the process is repeated.

4.2.2. Multiplexed RAM Buffer for Samples _)

The Multiplexed RAM Buffer for Samples (MRBS) is designed to store the

incoming samples for the duration of an estimation interval. The MCRM operates on

the samples obtaining the carrier phase for the channels. Also, at this time the input

samples are buffered in the MRBS. The MDRM uses the output of the MCRM along with

the stored values of MRBS to recover the digital data.

4.2.2.1 The Operations of

The Multiplexed RAM Buffer for Samples (MRBS) is designed basically to store

the incoming samples. The hardware design for MRBS is shown in Figure 4.2. This

design uses a single RAM-Latch combination at each stage to store samples of different

channels corresponding to each AGC cycle. The latches are used to latch the incoming

samples at the negative edge of the clock. When the clock is positive, the samples are

read from the RAM. They are latched at the negative edge of the clock. And, when the

clock is negative, the contents of the latch are written into the succeeding RAM.

Throughout this single clock cycle, the AGS addresses an unique location of the RAMs.

A 1KX8 RAMs and 8 bit latches are needed for this design.

A sample of the first channel is stored only in the first location of the RAMs.

Similarly, any sample corresponding to the nth channel is stored only in the nth

location of the RAMs. Therefore the number of locations in the RAMs (1K in our case)

will be a physical limit on the number of channels that can be processed. In the specific
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design for 800 channels the samples will be stored in 800 different locations of each

RAM.

The samples of all the channels are input serially. The first sample is latched

and moved to the first location of the first RAM with the AGS addressing the first

location. The second sample is moved into the second location addressed by the AGS

and so on until the 800th sample is in the 800th location addressed by the AGS. After

the first cycle of the AGC, the first set of 800 samples for all the channels is received.

These samples are stored in the 800 locations of the first RAM. The next set of

operaUons begins with an incremented AGC and a reset AGS. This corresponds to the

input of the second set of samples for all the channels. When the clock is positive, the

first sample of the second set is read from the first RAM into the second latch and is

latched at the negative edge; at the same time a new sample is latched at the first latch.

When the clock is negative, the latched samples are written into their succeeding RAMs.

Note again that these operations are done in one clock cycle with the AGS addressing

the first location of the RAM. This process continues until the AGS points to the 800th

location corresponding to the 800th channel. At this time, the first set of samples is

transferred to the second RAM and the Just arrived second set is stored in the first RAM.

Movement of data and reading of new data continue for 15 AGC cycles. After 15 cycles

of AGC, the first set of samples is in the 15th RAM and the 15th set of samples is in the

first RAM. When the first sample of the 16th set is input to the MRBS, the very first

sample received is output from the 15th RAM to its succeeding latch. This sample is

delayed by three clock cycles by using three latches. This is done to provide the MDRM

with synchronized samples from MCRM and MRBS.

4.2.3 Multiplexed Data Recovery Module (MDRM}

The Multiplexed Data Recovery Module (MDRM) is designed to extract the digital

information. It operates on the samples processed by the MCRM and MRBS. Therefore,
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it needs the input of these two modules for the start of its operations. This module

recovers the digital data which was modulated and transmitted. The hardware design

is shown in Figure 4.3.

4.2.3. I MDRM Operations

The MDRM module utilizes the in-phase and quadrature-phase samples from

the MRBS along with the sine and cosine values of the MCRM to extract the digital data

for aU the channels. At any t/me four values are input to this module. These values are

operated according to equations (3.13) and (3.15). The output is computed and stored

in a latch preceeding the Digital Data RAM (DDR) as shown in Figure 4.3. Also, these

values are used as an input to the Multiplexed Timing Recovery Module (MTRM). After

the necessary computations are performed the results are stored in unique locations of

the Digital Data RAM (DDR). These locations are addressed by the Address Generator

for Samples (AGS).

The result of the computations stored in the latch preceeding the DDR is either

negative or positive. The sign of the values stored in the latches is determined by

examining the Most Significant Bit (MSB) of the latch. For a positive value in the latch

a ' I' is stored in the DDR. A '0' is stored for a negative value. This will be a 2-bit data bus

to the DDR corresponding to the input from the in-phase and the quadrature-phase

channels. The AGS will provide the addresses to the DDR for storing the digital data of

the various channels in their allotted locations.

From the time the samples are input to the MDRM, it will take three clock cycles

for them to appear at the DDR. This is because of the three latches used preceeding the

DDR. Hence the address from the AGS should be delayed by three clock cycles. However,

a six clock delay is provided to address the DDR to account for a further three clock

delay for the sample to traverse through the MCRM. Thls is due to considering the use of

a single integrated AGS for all the modules.
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4.2.4 Multiplexed Timing Recovery Module {MTRM_

A Multiplexed Timing Recovery Module (MTRM) is designed to extract the timing

information needed for tracking the input samples. This timing information is used by

the interpolator. Its input is available from the latches used preceeding the DDR of the

MDRM. The output of these latches is used as an input to the _.

4.2.4.1 Data Operations in MTRM

The Multiplexed Timing Recovery Module (MTRM) implementation for the

multiplexed channels is shown in Figure 4.4. The input samples of all the channels are

stored in the three Buffer RAMs (BRs). This RAM-latch sequence operates in a manner

similar to the RAM-latch operation described earlier for the MRBS. These samples are

input to the BR's at every clock cycle. The input samples stored in the first BR are

successively moved from one BR to the next until the three sets of samples of all the

channels are acquired. These samples are needed for the computations as in equation

(3. I0). The address from an integrated AGS is delayed by six latches to account for the

delay in receiving the samples at the BRs as shown in Figure 4.4. The data sample is

read from the BR and is latched at the negative edge of the clock into the succeeding

latch. When the clock goes low, the preceeding latch contents are written into the BR.

These operations are performed simultaneously in all six BRs. The data are

transferred from one RAM to another using the intermediate latches. Once again, the

AGS provides the addresses for storing the input samples in the unique locations

allotted in the BRs. The computations are performed with the most recent peak sample

in the first BR and the estimated cross-over and peak samples in the successive BR's.

The relevant computations will start once the samples are available in all of

the BRs. The timing error in sampling each of the channels as in equation (3.11) is then

computed, updated and stored in a _ RAM {TR). This error is accumulated with the

previous error values and is stored in the TR. A correction in timing is available only
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for successive symbols which have a transition. Also, the operations should be

performed only at the next configuration with cross-over samples in the middle BR

and the peak samples in the extreme BRs. This will be available only at every other

AGC cycle. Each BR is a 1KX8 for accomodating 8 bit samples for a maximum of 1024

channel locations. The TR is a 1KX12 to accomodate for an overflow due to the

accumulation of samples.

4.2.4.2 Control Circuitry

After the samples are input to the MTRM, it takes three AGC clock cycles and

three AGS clock cycles for an input to be available at the Timing RAM [TR). A three

latch delay is provided for the address of AGS to appear at the TR. As discussed earlier,

the inputs to the TR should be read only at every other AGC cycle. Therefore, the TR is

enabled appropriately by a logic using the Least Significant Bit (LSB) of the AGC. The

TR needs the Write Enable (WE) to be provided for one AGC cycle and denied for the

next. This can be achieved by utfllzing the LSB of AGC which changes from 0-1 and 1-0

every other AGC cycle. The logic for enabling the TR is provided in the Table 4.3. LAC

denotes the LSB ofAGC. _ and _ represent the Read Enable and Write Enable of the

Timing RAM.

Table 4.3: Logic for Timing RAM

LAC CLK C_ _ __, COMMENTS

0 0 1 1 1 Write disable

0 1 0 0 1 Write disable

1 0 1 1 0 Write enable

1 1 0 0 1 Write disable

The logic needed to provide the _ for the TR at every other AGC cycle is

achieved by a NAND realization of LAC and _. This will provide _ of TR for one
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complete AGC cycle (amounting to 800 AGS cycles) and not provide it for the next AGC

cycle. By this process only those operated values corresponding to the samples which

are in the desired configuration in the BR's are written into the TR. A delay of three

latches is provided for enabling the TR. This is needed to coincide with the data which

appears at the TR after three clock cycles.

4.3 Design And Interface Of All The Modules

The combination of the four modules namely MCRM, MRBS, MDRM and MTRM

is collectively called a PRODEM. These four modules need to be appropriately

interfaced. The addressing scheme, control circuitry and the integration of addressing

units for all the modules need special attention. A design for each of the modules with

proper interfaces is shown in Figure 4.5.

As noticed from earlier discussions, the addressing for each of the modules is

achieved by using a AGS. All the RAMs used in each of the modules need an AGS for

addressing the locations pertaining to various channels. By interfacing these modules,

a single integrated AGS is desired. Use of single AGS also requires additional latches to

address the RAMs in each of the modules. Efforts were directed to use common control

circuitry for aU the modules. Use of system AGS and AGC also required glue logic to

interface all of the modules. Also, buffers are needed to interface the outputs of MCRM

and MRBS to the MDRM. This enables the MDRM to operate on the in-phase and

quadrature-phase samples from the MRBS with the corresponding sine-cosine values

from the MCRM. The MTRM uses the output of only one module (from the latches

preceeding the DDR of MDRM) and hence does not need any buffers for its interface.

The design is flexible in terms of the total number of channels that can be

processed. A single addressing scheme is used to keep the hardware flexible. By

choosing larger AGS and RAMs, the total number of channels can be increased. The
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upper limit of the channels is restricted by the total number of locations in the RAMs.

In this design up to 1K channels can be demodulated as 1K RAMs are selected. However,

one should keep in mind that the clock speed of the units also restricts the number of

channels that can be processed. By designing the AGS as a variable counter, it is very

simple to accomodate a variable number of channels. The maximum count of the AGS

will automatically correspond to the maximum number of channels for the same

design. An algorithm is developed to process groups of varying bit rate channels and is

described in the next section.

4.3. I Issues in AC,8 f_" _ty

As discussed earlier, the address generator AGS plays a crucial role in

addressing the appropriate locations of the RAMs. It is responsible in providing

addresses for accurate storage and retrieval of the data. If all the channels had a

uniform bit-rate, then the address generator AGS will count up to the maximum

number of channels and start the count all over again. In case of groups of varying bit

rate channels the algorithm will be different and is described as follows.

Let X and Y be the number of channels in two groups (Y<X). Then the address

generator will not access the channels serially (X+Y) in the RAM, but wiU access them in

such a way that the higher bit rate channels locations are accessed a greater number of

times than the lower bit rate channels. Assume Y has a higher bit rate, then the

algorithm will be as follows:

Do once

X channels

Do (X/Y) times (rounded to an integer)

Y channels

end

end
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AGS that will incorporate this algorithm in the design will be reconfigurable

for groups of varying bit rate channels. The user will specify parameters related to

the number of channels, number of groups and the bit rate of the channels. A

microprocessor can be used to write a control word to control the logic of the address

generator. The AGS will count to the number of channels in the case of channels with

equal bit rates. If the channels are groups of different bit rate, then the addresses will be

generated as described by the algorithm. The AGS counting scheme can be prestored in

the form of a hardware look up table or it can be made available under the software

control of a microprocessor. The address generator can be configured from the ground

according to the user specifications. This is essential if the user needs to vary the

number of channels or the groups of channels.

4.3.2 Certain Sytem Parsmeters

The data received by the PRODEM could relate to the modulated data pertaining

to voice, data, high speed FAX or other applications. Based on the input, the bit rate can

be classified in three different groups as considered in [1]. The three different cases

considered are shown in Table 4.4.

Table 4.4: Several Bit Rate Applications

Bit rate Number of channels Total bit rate

1. 64Kbps 800 51.2 Mbps

2. 2.048 Mbps 24 51.2 Mbps

3. 64Kbps&2.048Mbps 400& 12 51.2 Mbps

It can be seen that the total bit rate for all the cases is 51.2 Mbps. The PRODEM

has to maintain this rate of computation to process the information for all the



50

channels. Some of the parameters involved for processing the 800 channel case are

provided in Table 4.5.

Table 4.5: Some System Parameters

Modulation

Uplink

Downlink

Number of channels

Bandwidth of each channel

Bit rate of each channel

Symbol rate

Total channel bandwidth

Time allowed for processing

Time allowed for demodulation

Overall bit rate required

Word length

Output of PRODEM

Time for processing 800 channels

QPSK

SCPC/FDMA

TDM

8OO

45 Khz

64 Kbps

32 Ksps

36 Mhz (45Khz X 800 )

27.7 ns

27.7 ns (based on interpolation)

51.2 Mbps (800 X 64 Kbps)

8 bits

27.7 ns

22.2 _Is

The address generator AGS provides the addresses for appropriately storing

and accessing the channel information. For 800 channels (64 Kbps each), it addresses

800 different locations of the 1K RAMs corresponding to 800 channels. Similarly, the

data for each sample of the 24 channels (2.048 Mbps each) are stored in and accessed

from 24 locations of the 1K RAM. In the third case which is a mix of varying bit rate

channels, the address generator first stores the data of the 400 channels (64 Kbps each)

in 400 locations of the 1K RAM. It then stores the data of the 12 channels (2.048 Mbps



each) by counting 400/12

higher bit rate channels.

= 33.33 (actually 34) times. This is necessary to process

4.4 Power Requirements

From a literature survey of the currently available memory and logic units [19-

21] the power requirements of the MCRM. MBRS. MDRM and MTRM are estimated. The

power estimates for the various units in the design are listed in Table 4.6. The

components used in each of the modules are listed in Table 4.7. The power requirement

of all the modules is listed in Table 4.8.

Table 4.6: Power Rating of the Units Used in the Design

RAMs 200 mW

ROMs 100roW

ADDER/SUB 20 mW

MULTIPLIER 250roW

MODULE

MCRM

MRBS

MDRM

MTRM

Table 4.7: Total Number of Units Used in the Design

RAMs ROMs ADD/SUB MULT

3 2 2

30 - -

1 - 2 4

7 - 4 2

LATCH

16

36

16

3O

Table 4.8: Total Power Requirements of the Modules

MCRM 840 mW

MRBS 6000 mW
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MDRM 1240 mW

MTRM 1980 mW

TOTAL 10.06 W

4.5 _ Simulation

The modules of the PRODEM are simulated in high level using C language. The

software describes the operation of the hardware units for each of the module. The

operation of RAMs, latches, adders, control circuitry, etc., of each of the modules will be

described by the software. The software description pertains to the data flow in all the

hardware units with respect to the system clock.

The software programs are written to describe the operations performed by the

MCRM, MRBS, MTRM and MDRM. Also a program is written to describe the hardware

interface of MCRM, MRBS and MDRM. Each of these programs uses an input file

consisting of random numbers. These numbers are passed through the hardware

described by the program. The contents of the hardware units are displayed after each

clock cycle. Therefore the location of the data is easily examined for each clock cycle.

After a certain number of clock cycles the data are output from the module. The random

numbers are passed through the simulated hardware at least for this number of clock

cycles. The control circuitry is also incorporated in the simulation program. It

accounts for the I_ and the WE of the RAMs. The data are therefore read or written into

the RAMs based on whether or not certain control parameters are satisfied. The flow of

control signals can be seen in the output display of the units for each of the clock cycle.

The simulation is carried out for eight SCPC/FDMA channels. The estimation

period for these channels is assumed to be four samples. The simulation is therefore a

scaled down version for 800 SCPC/FDMA channels which had a sixteen sample

estimation period.



4.5.1. MCRM $1mttlatlon

A program is written to simulate the operations performed by the Multiplexed

Carrier Recovery Module (MCRM). The samples are input from a file consisting of

random numbers. These numbers are passed through the units of the MCRM. At each

clock cycle the contents of the AR, IR, OR and SR are displayed. The AGS increments

with every clock cycle. It counts up to eight unique values corresponding to eight

channels. The terminal count of the AGS is a clock for the AGC. The AGC count

represents the number of complete sets of samples pertaining to all the channels. In the

simulation, AGC counts to four unique values corresponding to four sets of samples

used in an estimation period. The simulation program, input and the output are listed

in Appendix B.

The samples are input to the MCRM at every clock cycle. For each clock cycle

various operations are performed to the IR, SR, AR and OR. The operation of these units

with respect to each clock cycle is shown in Table 4.9. These operations are

incorporated in the simulation program. Initially, the first set of data is available at

the output of the IR after the first clock cycle. The in-phase and quadrature-phase

samples in the IR are represented as IRI and IRQ, respectively, as shown in the output

file. At the second clock cycle, these data are moved to the ARs. The ARs used to store

the in-phase and quadrature-phase samples are represented as ARI and ARQ,

respectively. The data are stored in the first location of the ARs as shown in the output

file. After the second clock cycle, the data are stored in the next successive locations of

the AR. Note that the AGS is incremented with each clock cycle and the AGC is

incremented with every terminal count of the AGS. After the AGC is incremented the

ARs will have the first set of data corresponding to eight channels. During the second

AGC cycle, the input data from the IR are accumulated with the data in AR and stored

back in the ARs. The sine and cosine parts of the OR are represented as ORS and ORC,

respectively. The output data from the OR for each clock cycle are not written into the
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SR until certain conditions are met. Data are written into the SR during the fourth AGC

cycle (AGC=3 and AGS=4). This is because the sine-cosine values of the accumulated

values are available only at this instant (as seen in the output file in Appendix B). This

set of values is available for one AGC cycle during which time all the sine-cosine values

for all the channels are received. SRS and SRC are used to represent the sine and cosine

values of the SR.

Table 4.9: Operations of MCRM

Positive clock: READ AR (only when Tccd = 0)

READ IR

READ OR

WRITE SR (only when Tccd = 1)

Positive to negative transition: LATCH data

Negative clock: WRITE AR

READ SR

Note that the instant when the first output is available from the MCRM, this

happens when AGC=3 and AGS=4. Thereafter an output is available at every clock cycle.

Also note that the same values of SR are output for four AGC cycles. Hence the SR values

will not be updated until the AGC is reset and again reads the values that allow such an

operation (AGC--3 and AGS=4). At this instant fresh values overwrite the existing values

in the SR. Also, the AR will store accumulated values until AGC=0 and AGS= 1. After this

time, fresh samples from the IR will overwrite the accumulated samples in the AR as

seen in the output listed in Appendix B.

4.5.2 _ Simulation

The Multiplexed RAM Buffer for Samples (MRBS) is used to store the incoming

samples. A program is written to describe the operations performed by the MRBS. RAMs



areusedto storesamplesofvariousdifferent channels.Latchesareusedto transfer the

data from one RAMto the next. As shownin Table4.10, data are read from the RAMs

whenthe clock is positive.Thewrite operationis performedwhen the clock is negative.

During the negativeedgeof the clock the data are latched. The simulation program

incorporates these operations for each clock cycle. The simulation program, input and

output are listed in Appendix C.

Table 4. I0: Operation of MRBS

Positive clock:

Positive to negative transition:

Negative clock:

_RAM

LATCH DATA

WRITE RAM

The samples are input to the first latch and first RAM of the MRBS. The first

latch and RAM are represented in the output file as LA1 and RA1, respectively. At the

end of the first clock cycle, the data are stored in LA1 and the first location of RA1 as

shown in the output program listed in Appendix C. After this clock cycle the samples

are stored in the successive locations of the RAI. The AGS is incremented with every

clock cycle and is used to address the storage locations of the RAMs. Also the AGC is

incremented by the terminal count of AGS. After one AGC cycle, the first set of samples

of the eight channels is available in RA1. After this time, the next set of samples is

input to the RAI and its previous set is transferred to the second RAM (RA2) by using the

second latch (I.A2). This indicates a new AGC cycle. By the end of this cycle (AGC= 1 and

AGS=8), the first set of samples is in RA2 and the second set of samples is in RA1. This

process is repeated until the samples are moved through the third RAM (RA3) and the

fourth RAM (RA4) by using the third latch (LA3) and the fourth latch (LA4), respectively.

As seen in the output file, the output of the module is available when AGS= 1 and AGC=3.

The data from LA4 are available as an output after this clock cycle.
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4.5.3 MI)RM Sim-laticm

The Multiplexed Data Recovery Module (MDRM) needs inputs from the MCRM

and the MRBS modules. Therefore the data output from these two modules are

synchronized with input to this module. This is achieved by observing the data output

from the two modules and designing latches to hold the data output from a faster

module. Since the data from the MRBS is output three clocks earlier than that of the

MCRM (see programs listed in Appendices B and C for MCRM and MRBS), three

additional latches are used to interface the MRBS to the MDRM.

The AGS and the AGC operate for eight channels as described earlier. MU 1, MU2,

MU3 and MU4 are used in the output file to represent the data output from the

multipliers of Figure 4.3. After the first clock cycle the data are available at the output

of the multipliers. After the second clock cycle it is available at the output of the adder

represented as ADD and the subtractor represented as SUB. The data are input to the

latches LA1 and LA2 during the third clock cycle. DDI and DDQ are used to represent the

in-phase and quadrature-phase storage locations of the DDR. The data values are input

to the DDR during the fourth clock cycle. It takes three clock cycles for the data to

appear at the input of the DDR. This is due to the three clock delays corresponding to the

three latches used preceeding the DDR. The operation of the units of this module is

shown in Table 4.1 1. The simulation program describes these operations. As can be

seen in the output file listed in Appendix D, an output is available from this module

when AGS=4 and AGC=0. After this instant, a sample is output from the DDR of this

module at every clock cycle.

Table 4.1 i: Operations of MDRM

Positive clock:

Positive to negative transition:

Negative clock:

WRITE DDR

LATCH data

READ DDR
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4.5.4 II_TRM Simulation

The MTRM needs an input from the MDRM module for the start of its

operations. The output from the latches preceding the DDR are used as an input to the

MTRM. The data are moved from one BR to the next similar to the data movement in

the RAMs of the MRBS module. It takes three AGC cycles for the data to traverse through

the three BRs. The operation of the hardware units is shown in Table 4.1 1 and the

simulation program listed in Appendix E incorporates these operations for each clock

cycle.

Table 4.12:

Positive clock:

Positive to negative transition:

Negative clock:

Operations of MTRM

READ BR

READ TR

LATCH data

WRITE BR

WRITE TR (only when LAC= 1)

LQ 1 and RQ 1 used in the output file represent the first latch and the first BR of

the quadrature channel. LI3 and RI3 represent the third latch and the third BR of the in-

phase channel. Since a analysis of data flow for the MRBS module is already verified

all the latches and RAMs of this part of the MTRM are not shown in the output listed in

Appendix E. From an earlier discussion the data are available at the input of LI4 and

LQ4 which represent the fourth latch of the in-phase and quadrature-phase when

AGS= 1 and AGC=3. ISB and QSB are the outputs of the subtractors for the in-phase and

quadrature-phase respectively. IML and QML are the outputs of multipliers for the in-

phase and quadrature-phase respectively. After the data are available at the output of
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the LI4 and LQ4 latches, it takes two clock cycles for it to appear at the input of TR. ADD

and AER represent the data at the adders used preceeding the TR. The data are input to

the TR when AGS=4 and AGC=3. After this instant, data are continuously input to

different locations of TR corresponding to various channels till AGS=4 and AGC=0. For

the next AGC cycle no samples are written into the TR. Following this the samples are

once again written into the TR. The simulation program, input and the output files are

listed in Appendix E.

4.5.5 System Slmulatlcm

The data flow for the modules is examined for the operation of the interface of

the modules. The address generator AGS is integrated for all the modules in this

simulation. Since the operation of the internal units of the MCRM, MDRM, MRBS and

MTRM are already known, this program incorporates the operation of these modules

and describes the hardware for the interface. The program is listed in Appendix F. It

accounts for the interface of MCRM and MRBS for the MDRM module.

The nomenclature used in the output file is similar to the one used for the

individual modules. In addition, SLC and SLS are the cosine and sine values in the

latches at the input of the MDRM. BI4 and BQ4 are the interface latches used at the

output of the MRBS. DIL and DQL are the latches of MDRM for storage of the digital data

in the DDR. RID and RQD are the digital data present in the DDR which correspond to

the in-phase and quadrature-phase respectively.

It is seen that when AGC---3 and AGS= 1, the data are available at the output of the

MRBS. It goes through three further latches after which it is available as an input to the

MDRM. This is necessary because the MCRM has an output only when AGC=3 and

AGS--4. At this instant the sine-cosine values are available from the SR of the MCRM

module. It takes three more clock cycles for the data to be input to the DDR Therefore

the throughput of the system is easily observed by having a sample output from the
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DDR for every clock cycle after the initial input to the DDR. When the outputs are

available the counters are reset (AGS= 1 and AGC=0). Incidentally, this is also the start

of input of new set of samples.





Chapter V

A HYPERCUBE IMPI,EME_rATION FOR SCPCIFDMA VOICE CHANNELS

In this chapter digital demodulation of Single Channel Per Carrier/ Frequency

Division Multiple Access (SCPC/FDMA) voice channels is implemented using a

hypercube. The demodulation algorithms are mapped onto several processors of a

binary hypercube. The aim is to provide a mapping [24-31] of these algorithms on a

hypercube architecture capable of recovering messages for several SCPC/FDMA voice

channels. Two models are developed and their simulations are performed. The speedup

results are also provided.

The discussion in this chapter is limited to exploring another scheme for high

speed demodulation of SCPC/FDMA channels. Since the hardware and power

requirements of an On Board Processing application are very crucial, this

implementation may not suitable for such an application. However, it could possibly be

used for certain other terrestrial applications. Also, the discussion is focussed on

mapping of these algorithms, their assignment and the performance estimation in

using such hypercubes.

A hypercube is a parallel computer with a fixed pattern of interconnection

among its processors. A three dimensional binary hypercube has processors placed at

the vertices of a cube with the edges being the interconnect.ion between them as shown

in Figure 5.1. It has 23 processors. A generalized hypercube of n dimensions has 2 n

processors. Also. it has n disjoint paths between any pair of nodes. Each node of the

hypercube has a processor and a memory unit and is called a Processor Element Module

(PEM). To represent the eight processors three bits are needed. The processors are

connected such that its neighbors differ only in a single bit position out of the three bits

used to represent them. The versatility of the hypercube [32-35] comes from the various

6O



61

PEM6 (I I0)

PEM3

(o11)

PEM4(IO0)

PEMO(O00)

PEM7 (I 1 I)

PEM5(I01)

PEM I (00 I)

F/gure 5.1: PEM Configurations For A Hypercube

dynamically configurable topologies and from a simple algorithm for node to node

communications.

5.1 Mapping Strategy

5.1.1 Algorithm Division

In order to understand the principle beb-_d the division of an algorithm, let us

analyze a simple algorithm and its task units as shown In Figure 5.2. Let the three

processes A, B & C be the tasks being pipelJ_ned w_th an assumption that B takes the

maximum computational time. Therefore this task will govern the operating speed of

the algorithm for a parallel computer. This computational time can be reduced by

examining B and further splitting it into parallel parts if possible. Otherwise, it can be

split into two further tasks in a pipeline. This process can be repeated till a lot of

smaller tasks are obtained. But usually in an extreme case if many tasks are created, a

lot of synchronizations and data transfers degrade the performance which we are

trying to achieve. Note that the slowest module in the diagram will govern the eventual



operation of the system. This principle is used to implement the demodulation

algorithm.

A B C A B1 B2 C

ORIGINAL ALGOFilTHM PIPELINED SPLIT

B1

PARALLEL SPLIT

A B1 B2 Bn C

'qm _ v _ 11r _ v

HIGHLY PIPELINED SPLIT

Figure 5.2: Parallel-Pipeline Splits Of An Algorithm

The demodulation algorithm is already studied in great depth in chapter 3. All

the operations performed for the demodulation are listed in Table 5.1. The operations

C- I to C-5 pertain to the carrier recovery algorithm. T- 1 to T-4 and D- 1 to D-4 pertain to

the timing and data recovery algorithms respectively. In a sequential implementation,

all these operations will be assigned to a single processor. If several processors are

available, portions of the algorithm will be assigned to each processor. This is

necessary ff a single processor cannot process the complete algorithm. From the llst of

computations needed for the demodulation, a simple flowgraph is drawn as shown in

Figure 5.3. This algorithm is divided into four parts assuming four processors are used

for all the operations of each channel. The other four processors of the binary

hypercube can be used to operate on another channel in parallel. Hence, a single
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hypercube can be used to process two channels m parallel.

is performed in the next sections.

A mapping of these models

Table 5.1: List of operations for demodulation

In +JQn = Rn. eJon.

In' +JQn' = (Rn) 4 . exp (Jd_n}

In" = I/2N+1 Y In' n= -N to n= N

Qn" = 1/2N+ 1 Y. Qn' n= -N to n= N.

ec= 1/m tan- 1 (Qn"/In").

An = In. cos oc + Qn. sinoc

Bn = Qn. cos oc - In. sinec

An = 1 ffAn<0

= 0 otherwise

Bn = lffBn<0

= 0 otherwise

Ti =[A2n-I {A2n -12n-2}]

T q = [B 2n-1 { B2n - B2n-2 }]

Un = Tin + Tqn

Wn = Wn-I + Un

(C-1)

{C-2}

(C-3)

(C-4}

{C-5)

(D-l)

(D-2)

(D-3)

(D-4)

(T-l)

(T-2)

(T-3)

(T-4)

5.1.2 Model-I

A model is developed for the algorithm as shown in Figure 5.3. Four tasks are

created for this algorithm. Each task is then assigned to a processor. The assignment is

shown in Table 5.2. The configuration of the PEMs for such an assignment is shown in

Figure 5.4. The numbers denote the PEMs of the binary hypercube. In this model four

processors are used for operating on a single channel. The other four processors are

used for operations on a second channel.

The mapping procedure is now discussed in detail. Let us assume that the

operations C-1, C-2, C-3, C-4 are assigned to PEM0. This processor can communicate

directly to PEM1, PEM2 or PEM4. If PEM1 is chosen to process C-5, D-I, D-2, its output

can communicate directly only with PEM3 and PEM5 which are not assigned as yet.
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This is because of the configuration of the processors of the hypercube (see Figure 5.1).

Therefore, the processors PEM3 and PEM5 are designated T- 1, T-2, T-3, T-4 and D-3, D-4

respectively. The other four processors of the hypercube are utilized for identical set of

tasks of a second channel. Let PEM2 be the processor desfgnated to operate on the

operations C-1, C-2, C-3, C-4 processes. Now the option is limited to choosing PEM6 for

the succeeding operations on C-5, D-1, D-2. This leaves PEM4 and PEM7 to perform the

operations corresponding to T-1, T-2, T-3, T-4 and D-3, D-4 respectively. Note that we

are striving to obtain those processor pairs which are directly connected to each other

for data transfer. This will save time and avoid additional hops from one processor to

another through an intermediate processor. Also, note that some of the additional

available interconnections are not utilized for this application. The hypercube as

assigned for this model, can operate simultaneously on 2 SCPC/FDMA channels in

parallel. The direction of transfer of data for these two channels is shown in Figure 5.5.

After the first task is computed by PEM0 and PEM2, their outputs are transferred to

PEM6 and PEM 1. In the second stage, PEM6 in tum computes its assigned task and

broadcasts the data to PEM4 and PEM7. Similarly PEM1 broadcasts data to PEM3 and

PEM5 after completing operations of its assigned task.

Table 5.2: Task assignment for ModeI-I

TASK NUMBER

Task 1

Task 2

Task 3

Task 4

PEM NUMBER OPERATIONS

0, 2 C-1, C-2, C-3, C-4

I, 6 C-5, D-i, D-2

3, 4 T-1, T-2, T-3, T-4

5, 7 D-3, D-4



_. 1.3 Mcxlel II

A second model is also developed for mapping the algorithm. In this model the

algorithm is assigned differently as compared to the earlier model. However, as before

four processors are used for processing four tasks of each channel. The tasks are

assigned to the processors as shown in Figure 5.6. The mapping procedure is similar to

the one described for Model-I. PEM3 and PEM5 are assigned the operations of C- 1, C-2,

C-3 and C-1, C-2, C-4 respectively. Since these two processing elements are connected

directly only to PEM 1 and PEM7. one of them is chosen to process the subsequent

operations C-5, D-l, D-2, D-3, D-4 of the third task. Let us assume that PEM7 is chosen

for achieving this process. It is in turn connected to the only other unassigned processor

which is PEM6. Therefore the fourth task is assigned to PEM6 with the operations T-1.

T-2. T-3, T-4. Therefore this model uses PEM3. PEM5, PEM6 and PEM7 for processing

the operations of a single channel. Note that this model has duplicate operations in the

first two tasks. Although this assignment appears to be redundant, as will be seen later,

it was aimed at achieving a better load distribution among the processors.

Similarly, the other four processors are assigned the operations of a second

channel. PEM4 and PEM 1 are assigned the operations of the tasks with the operations

C- 1, C-2, C-3 and C- I. C-2, C-4 respectively. The only processor that is connected to these

two processors and which is unassigned is PEM0. It is used to process the operations of

the third task which are C-5, D-1, D-2, D-3. D-4. PEM2 is used to process the

information output from PEM0. It is therefore assigned the operations T- 1, T-2, T-3, T-4

of the fourth task. The llst of operations and their mapping is shown in Table 5.3.

The data flow for this model will be with PEM3 and PEM5 operating on the first

two tasks of the first channel. Simulataneously PEM4 and PEM1 operate similarly for

the second channel as shown in Figure 5.7. In the second stage the PEM7 and PEM0

operate on their tasks and transfer the data to PEM6 and PEM2 respectively.
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C-I, C-2, C-3

T-l, T-2, T-3, T-4
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Figure 5.6: Mapping Of Modd-II
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Figure 5. 7: Data Flow For Model-II
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Table 5.3: Task assignment for Model-II

TASK NUMBER PEM NUMBER OPERATIONS

Task 1 3, 4 C-i, C-2, C-3

Task 2 5, I C-1, C-2, C-4

Task 3 7, 0 C-5, D- I, D-2, D-3, D-4

Task 4 6, 2 T- I. T-2, T-3. T-4

5.2 Simulation Of Models

The channels are simulated m Ada programming language. Ada is chosen for

this simulation as it is convenient to implement certain features of a multiprocessor

such as a hypercube [36-41]. The important features of a multiprocessor are the

interprocessor commumcaUon and synchronization techniques. The interprocessor

communication deals with the actual transfer of data from one processor to its

neighbour. The synchronization technique deals with making the processors operate at

a given iteration level. This amounts to holding the processor that completes its

assigned task earlier than its neighbouring processors. Ada supports the usage of these

features which are incoporated in the predefined constructs called tasks. Hence it is

chosen for the simulation of our hypercube.

The program for these models is developed for 32 channels as it was convenient

to implement. The estimation period for these channels is sixteen samples. Therefore

at any given time. a PEM processes its assigned task's operations for sixteen times. The

flowchart of the models used in the simulation is shown in Figure 5.8. Each task is

assigned the operations as discussed earlier. The operations of each task are repeated

for sixteen times corresponding to the sixteen sets of input data. The tasks are allowed

to communicate only as shown in the Figure 5.8. The simulation programs for Model-I

and Model-II are listed in Appendix G and Appendix H respectively. In these programs.
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32 channels are simulated. However, PEMs of each channel operate independently and

irrespective of the operations performed by other PEMs operating on other channels.

Therefore the result of the simulation can be linearly extrapolated for any number of

channels.

The number of floating point operations for each model is noted and is listed in

Table 5.4. A communication penalty of 10 floating point operations is assumed as an

overhead. The speedup is estimated based on the task which has the most number of

floating point operations. This relates to an earlier discussion on the slowest

computing processor governing the speed of the multiprocessor system. The speedup is

compared to that of a single processor. It is observed that for our models, X hypercubes

can process 2X channels. Also, X hypercubes (or 8X processors) can be used for achieving

a speedup of 8X times over a single processor. However, in a practical situation, due to

the unequal distribution of load among the processors and due to the communication

penalty, a degradation in performance is expected. The achieved speedup for Model-I is

shown in Figure 5.9. Since Model-II has a better distribution of its operations among

the processors, it shows an improvement in its performance as shown in Figure 5. I0.

Table 5.4:

MODEL-I (UNBALANCED)

C-1, C-2, C-3, C4 10X16 =160

C-5, D-l, D-2 6X16+4=100

D-3, D-4 2X16 --32

T-1, T-2, To3, T°4 5X16 =80

Floating point operations for Model-I and Model-II

MODEL-II (BALANCED)

C-1, C°2, C-3 8X16

C-1, C-2, C4 8X16

C-5, D-1, D-2, D-3, D-4

T- 1, T-2, T-3, T-4

=128

=128

8X16+4=132

5X16 =80

From earlier discussions in chapter 4, the data of all 800 channels is input

every 22.2_s. Each task does its operations sixteen times corresponding to the sixteen

samples of an estimation period. Therefore, the time available for completing each task

is less than 355.2_s (22.2_._X16). This makes sure that the processing time is faster than
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the input rate. As the slowest task has more number of floating point operations than

the other tasks, an estimate of the time taken for its floating point operations is

sufficient to determine the performance of the system. By knowing the number of

floating point operations that need to be performed in a given time, the Mega Floating

Point Operations Per Second (MFLOPS) rating of the hypercube can be predicted.

Therefore each processor of the hypercube has to sustain atleast [(160+10)/355.2 =

0.48] MFLOPS for the operation of the Model-I. Ten floating point operations are

assumed as an overhead for the communication of data between the processors. In case

of Model-II, each processor needs to sustain lesser [(128+10)/355.2 = 0.39] MFLOPS.

Therefore, the hypercube chosen for such an application is required to sustain (0.48X8

= 3.84) MFLOPS and (0.39X8= 3.12) MFLOPS for Model-I and Model-II respectively.





CHAPTER VI

CONCLUSION AND FUTURE WORK

6,1 Conclusion

In this research project, an efficient demodulator architecture is developed for

a large number of low data rate small earth station users in an SCPC/FDMA system.

The development of the architecture is based on the paraUel-pipelined design approach.

This principle aims at mapping the algorithm in such a way that the independent

sections are assigned to the parallel units and the dependent sections to the pipelined

units. The speed of the computational units is governed by the clock rate of the module,

hence high speed computational units are used. The speed of the demodulator depends

on all the modules in operation. The input samples of the various channels are

obtained from a pipelined FFT. These serially input samples support the multiplexed

demodulator architecture as opposed to the bank of parallel demodulators. This device

is capable of processing a large number of channels which may be variable in both

number and bit rates.

Also, a multiprocessor approach is provided with an emphasis on a three

dimensional binary hypercube. The development of this architecture is also based on

the parallel processing approach. Two models are created for mapping the

demodulation algorithms for such a scheme. The creation of an appropriate model has

a bearing on the performance of the system. It is found that an improvement is achieved

in providing load balanced models.

6.2 Future Research

Some of the future research could be directed in the following areas:

The design of the hardware interface between the output of the

transmultiplexer and the input to the PRODEM will be required. This will pertain to

73
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the design of an interpolator. The storage and the retrieval of the data for multiple

channels for this device should also be investigated. The number, group size and the bit

rate of the channels should be programmable. This is critical as time multiplexing is

inversely related to the speed of the designed hardware.

-In the hardware design approach, the elimination of MRBS will improve the

power and hardware requirements to a large extent. Future work should look at

possibilities of eliminating the need for MRBS.

- The proposed design is for a QPSK modulation scheme. The design could be

generalized to accomodate other bandwidth efficient modulation schemes with

multiple data rates. To begin with, Offset-QPSK and 8-PSK could be considered.

-The design in this research maximizes the throughput rate for a given

application. This is achieved by using parallel and pipeline techniques and may

require several custom-VLSI chips. For low bit rate applications (1 to 10 Mbps) it will be

desirable to design a single chip demodulator rather than distribute its functions over

several chips. It should be recognized that a transmultiplexer is followed by a

demodulator in our application (On-Board Processing) but the demodulator itself could

also be used in other space and ground locations. In this regard some of the work done

related to hypercubes and other multiprocessors could also be investigated.
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Appendix A

DEMODULATION ALGORITHMS IN A QPSK MODEM
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c

c

c

c

c

C

C

c

c

c

c

c

c

C

SUBROUTINE phaseest(insig,strobe,outsig)

AUTHOR: LINUS P. EUGENE

ADVANCED COMMUNICATION RESEARCH

UNIVERSITY OF TOLEDO

TOLEDO, OHIO

Carrier Dhase estimator

LABORATORY

This subroutine extracts the carrier phase. The modulation

information is killed and the carrier phase obtained.

ARGUMENTS:

insig - A complex input signal with phase disturbance

outsig - An output signal with the phase estimate of the

carrier

IMPLICIT NONE

INCLUDE 'BOSS$SYSTEM:[SYSTEM]BOSSFORTRAN.INC'

REAL tphase,q,in,newphase,y,quad,realpart,imagpart,r,i,phase,mag

INTEGER count

COMPLEX newsig, insig,outsig,phasesig

LOGICAL *I strobe

i) Rotate out the demodulation

in=REAL(insig)

quad=AIMAG(insig)

phase=ATAN2(quad,in)

phase=4*phase

2) Obtain the phase of the disturbance

mag=in*in+quad*quad

newsig=CMPLX(COS(phase),SIN(phase))

i=REAL(newsig)

q=AIMAG(newsig)

newphase=ATAN2(q,i)

newphase=0.25*newphase

outsig=CMPLX(COS(newphase),SIN(newphase))

RETURN

END
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c

c

C

c

c

c

C

SUBROUTINE conphase(insig,outsig)

LINUS P. EUGENE

ADVANCED COMMUNICATION

UNIVERSITY OF TOLEDO

TOLEDO, OHIO

RESEARCH LABORATORY

Constant magnitude and transparent phase unit.

This subroutine outputs the same phase of the input

It normalizes the magnitude of the input signal

ARGUMENTS:

insig - input complex signal

outsig- output complex signal

IMPLICIT NONE

INCLUDE 'BOSS$SYSTEM:[SYSTEM]BOSSFORTRAN.INC'

REAL inphase,newphase,y,quad,realpart,imagpart

COMPLEX insig,outsig

signals.

inphase=REAL(insig)

quad=AIMAG(insig)

y=(quad/inphase)

newphase=ATAN(y)

realpart=C0S(newphase)

imagpart=SIN(newphase)

outsig=CMPLX(realpart,imagpart)

RETURN

END
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SUBROUTINE pedemod(insig, outsig, strobe, outstrobe,

car tier, phasesig, sym_rate )

c

c

c

c

c

AUTHOR : MARK J. VANDERAAR

REVISED AUTHOR : LINUS P.EUGENE

ADVANCED COMMUNICATION RESEARCH LABORATORY

UNIVERSITY OF TOLEDO

TOLEDO, OHIO

c QPSK Coherent Demodulator

c

c

c

This subroutine demodulates a signal in complex envelope form.

It obtains the phase estimate from the carrier phase estimator

and effectively uses it with the complex signal.

c ARGUMENTS :

c insig

c

c outsig

C

c

c strobe

c

c

C

c

c

c

c

- A complex number that represents the input to
the demodulator

- The demodulated data (complex). Note that it is

not the output symbol, but the vector that

represents the output symbol.

- A logical input impulse train at the rate of

the symbol rate.

outstrobe - A logical output impulse train at the rate of

the symbol rate.

carrier - The carrier frequency for simulation purposes,

this will most often be zero.

phasesig - The phase estimate from the carrier phase estimator
module.

IMPLICIT NONE

INCLUDE 'BOSS$SYSTEM:[SYSTEM]BOSSFORTRAN.INC'

C Define the variables

LOGICAL*I strobe, outstrobe

REAL inphase, quad,inpart,qapart, carrier, phil, phi2,radian

REAL ininp , tphase, inquad, sym_rate

COMPLEX insig, outsig, area, phasesig, phi

c Set up the local memory structure

STRUCTURE / LOCMEM /

LOGICAL*I inited, started, strobeflg

REAL phase, oldin, oldquad

COMPLEX fintegral, integral

END STRUCTURE

RECORD /LOCMEM/ MEM

C

c

If this is the first call to the subroutine,

initialize variables.

IF(.NOT.mem.inited) THEN

mem.started = .FALSE.

mem.strobeflg = .FALSE.

mem.inited = .TRUE.

mem.integral = (0.0,0.0)

mem.fintegral s (0.0,0.0)

mem.oldin = 0.0

mem.oldquad - 0.0

ENDIF
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At the beginning of the first symbol, calculate

the phase delay
IF (strobe) THEN

IF (.NOT.mem.started) THEN

mem.phase = carrier*curtime
mem.started = .TRUE.

ENDIF

ENDIF

Perform a step of the demodulation

i) Split the signal into the inphase and quadrature components

inphase = REAL(insig)

quad = AIMAG(insig)

2) Calculate the real and imaginary part of the input phase

estimate.

phil

phi2

= REAL(phasesig)

= AIMAG(phasesig)

3) Multiply the components by the basis function

inpart

qapart
outstrobe

outsig

= inphase*phil+quad*phi2

= quad*phil-inphase*phi2
= strobe

= CMPLX(inpart,qapart)

RETURN

END



OUTPUT FILE (_ODEM

Time = 0.2028000E+00

#Errors #Bits BER
0 i00 0.0000E+00

Time = 0.4028000E+00

#Errors #Bits BER

0 200 0.0000E+00

Time = 0.6028000E+00

#Errors #Bits BER
0 300 0.0000E+00

Time = 0.8028000E+00

#Errors #Bits BER

0 400 0.0000E+00

Time =

#Errors

0

Time =

#Errors
0

Time =

#Errors
0

Time =

#Errors

0

0.I002800E+01

#Bits BER

500 0.0000E+00

0.1202800E+01

#Bits BER
600 0.0000E+00

0.1402800E+01

#Bits BER
700 0.0000E+00

0.1602800E+01

#Bits BER
800 0.0000E+00

Time = 0.1802800E+01

#Errors #Bits BER
0 900 0.0000E+00

Time = 0.2002800E+01

#Errors #Bits BER

0 i000 0.0000E+00

Time =

#Errors
0

Time =

#Errors
0

Time =

#Errors

0

0.2202800E+01

#Bits BER
ii00 0.0000E+00

0.2402800E+01

#Bits BER

1200 0.0000E+00

0.2602800E+01

#Bits BER
1300 0.0000E+00

Time = 0.2802800E+01

#Errors #Bits BER
0 1400 0.0000E+00
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Time = 0.3002800E+01

#Errors #Bits BER

0 1500 0.0000E+00

Time = 0.3202800E+01

#Errors #Bits BER

0 1600 0.0000E+00

Time = 0.3402800E+01

#Errors #Bits BER

0 1700 0.0000E+00

Time = 0.3602800E+01

#Errors #Bits BER

0 1800 0.0000E+00

Time = 0.3802800E+01

#Errors #Bits BER

0 1900 0.0000E+00

Time = 0.4002800E+01

#Errors #Bits BER

0 2000 0.0000E+00

Time =

#Errors

0

0.4202800E+01

#Bits BER

2100 0.0000E+00

Time = 0.4602800E+01

#Errors #Bits BER

0 2300 0.0000E+00

Time = 0.4802800E+01

#Errors #Bits BER

0 2400 0.0000E+00

Time = 0.5002800E+01

#Errors #Bits BER

0 2500 0.0000E+00

Time = 0.5202800E+01

#Errors #Bits BER

0 2600 0.0000E+00

Time = 0.5402800E+01

#Errors #Bits BER

0 2700 0.0000E+00

Time = 0.5602800E+01

#Errors #Bits BER

0 2800 0.0000E+00

Time = 0.5802800E+01

#Errors #Bits BER

0 2900 0.0000E+00

Time = 0.4402800E+01

#Errors #Bits BER

0 2200 0.0000E+00



Time =
#Errors

o

82
0.6002

#Bit

300

800E+01

s BER

0 0.0000E+00

Time =

#Errors
0

0.6202

#Bit

310

800E+01

s BER

0 0.0000E+00

Time =

#Errors

0

0.64028

#Bits
3200

00E+01

BER

0.0000E+00

Time =

#Errors

0

0.66028

#Bits

3300

00E+01

BER

0.0000E+00

Time =

#Errors

o

0.68028

#Bits

3400

00E+01

BER

0.0000E+00

T me =

#Errors
0

0.70028

#Bits
3500

00E+01

BER

0.0000E+UU

Time =

#Errors
0

0.72028

#Bits
3600

00E+01

BER

0.0000E+00

Time =

#Errors
0

0.74028

#Bits

3700

00E+01

BER

0.0000E+00

Time =

#Errors
0

0.76028

#Bits

3800

00E+01
BER

0.0000E+00

Time =

#Errors

0

0.78028

#Bits

3900

00E+01

BER

0.0000E+00

Time =

#Errors

o

0.80028

#Bits

4000

00E+01

BER

0.0000E+00

Time =

#Errors

o

0.82028

#Bits

4100

00E+01

BER

O.O000E+O0

Time =

#Errors

0

0.84028

#Bits

4200

00E+01

BER

0.0000E+00

Time =

#Errors

o

0.86027

#Bits

4300

99E+01

BER

0.0000E+00

Time =

#Errors
0

0.88028

#Bits

4400

00E+01

BER

0.0000E+00



Time = 0.90_2_00E+01

#Errors #Bits BER
0 4500 0.0000E+00

Time = 0.9202800E+01

#Errors #Bits BER
0 4600 0.0000E+00

Time = 0.9402800E+01

#Errors #Bits BER
0 4700 0.0000E+00

Time = 0.9602799E+01

#Errors #Bits BER
0 4800 0.0000E+00

Time = 0.9802800E+01

#Errors #Bits BER
0 4900 0.0000E+00

T me =

#Errors
0

0.I000280E+02

#Bits BER
5000 0.0000E+00

Time = 0.I020280E+02

#Errors #Bits BER

0 5100 0.0000E+00

Time =

#Errors
0

T me =

#Errors
0

T me =

#Errors

0

Time =

#Errors

0

Time =

#Errors

0

Time =

#Errors

0

Time =

#Errors

0

Time =

#Errors

0

0.1040280E+02

#Bits BER

5200 0.0000E+00

0.1060280E+02

#Bits BER

5300 0.0000E+00

0.1080280E+02

#Bits BER

5400 0.0000E+00

0.II00280E+02

#Bits BER

5500 0.0000E+00

0.I120280E+02

#Bits BER

5600 0.0000E+00

0.I140280E+02

#Bits BER

5700 0.0000E+00

0.I160280E+02

#Bits BER

5800 0.0000E+00

0.I180280E+02

#Bits BER

5900 0.0000E+00



Time = 0.12_ 04280E+02
#Errors #Bits BER

0 6000 0.0000E+00

Time = 0.1220280E+02
#Errors #Bits BER

0 6100 0.0000E+00

Time = 0.1240280E+02
#Errors #Bits BER

0 6200 0.0000E+00

Time = 0.1260280E+02
#Errors #Bits BER

0 6300 0.0000E+00

Time = 0.1280280E+02
#Errors #Bits BER

0 6400 0.0000E+00

Time = 0.1300280E+02
BER Ai0% o.oooo .+oo

Time = 0.1320280E+02

#Errors #Bits BER

0 6600 0.0000E+00

Time =

#Errors

0

0.1340280E+02

#Bits BER

6700 0.0000E+00

Time =

#Errors
0

0.1360280E+02

#Bits BER

6800 0.0000E+00

Time =

#Errors

0

0.1380280E+02

#Bits BER

6900 0.0000E+00

Time =

#Errors

0

0.1400280E+02

#Bits BER

7000 0.0000E+00

Time =

#Errors

0

0.1420280E+02

#Bits BER

7100 0.0000E+00

Time =

#Errors

0

0.1440280E+02

#Bits BER

7200 0.0000E+00

Time =

#Errors

0

0.1460280E+02

#Bits BER

7300 0.0000E+00

Time =

#Errors

0

0.1480280E+02

#Bits BER

7400 0.0000E+00



Time
_Errors

0

85
0.1500280E+02

#Bits BER

7500 0.0000E+00

Time = 0.1520280E+02

#Errors #Bits BER

0 7600 0.0000E+00

Time

#Error

0

= 0.1540280E+02

s #Bits BER

7700 0.0000E+00

Time

#Error

0

= 0.1560280E+02

s #Bits BER

7800 0.0000E+00

Time

#Error

0

= 0.1580280E+02

s #Bits BER

7900 0.0000E+00

Time =

#Errors
0

0.1600280E+02

#Bits BER
UUUU U.UUUUE+UU

Time =

#Errors

0

0.1620280E+02

#Bits BER

8100 0.0000E+00

Time = 0.1640280E+02

#Errors #Bits BER

0 8200 0.0000E+00

Time

#Errors
0

= 0.1660280E+02

#Bits BER

8300 0.0000E+00

Time = 0.1680280E+02

#Errors #Bits BER

0 8400 0.0000E+00

Time = 0.1700280E+02

#Errors #Bits BER

0 8500 0.0000E+00

Time = 0.1720280E+02

#Errors #Bits BER

0 8600 0.0000E+00

Time = 0.1740280E+02

#Errors #Bits BER

0 8700 0.0000E+00

Time = 0.1760280E+02

#Errors #Bits BER

0 8800 0.0000E+00

Time

#Errors
0

= 0.1780280E+02

#Bits BER

8900 0.0000E+00



Time
#Error

0

Time
#Error

0

Time
#Error

0

= 0.1800280E+02

s #Bits BER

9000 0.0000E+00

= 0.1820280E+02

s #Bits BER

9100 0.0000E+00

= 0.1840280E+02

s #Bits BER

9200 0.0000E+00

Time = 0.1860280E+02

#Errors #Bits BER

0 9300 0.0000E+00

Time = 0.1880280E+02

#Errors #Bits BER
0 9400 0.0000E+00

Time =

#Errors
0

0.1900280E+02

#Bits BER
9500 0.0000E+00

Time = 0.19202

#Errors #Bits
0 9600

Time = 0.194

#Errors #Bi

0 97

Time = 0.196

#Errors #Bi

0 98

Time = 0.198

#Errors #Bi

0 99

80E+02

BER

0.0000E+00

0280E+02

ts BER

00 0.0000E+00

0280E+02

ts BER

00 0.0000E+00

0280E+02

ts BER

00 0.0000E+00
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PROGRAMS

Appendix B

IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN THE
HARDWARE DESIGN OF MCRM
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/* Hardware behavioural simulation for a Multiplexed

Carrier Recovery Module (MCRM) _I

/* This program shows the data flow of samples for 8 channels

for an estimation period of 4 samples for each channel */

#include <stdio.h>

/* 1 is Address Generator for Samples

agc is Address Generator for Channels
ARE is Enable for Accumulation RAM

SRE is Enable for Storage RAM */

main()
{
int adl=l;
int sdl=3;

int read disable=0;
int l=1,en=O,aen=O,sen=O;

int count,m,k,i,q,J,adder_I,adder_Q;

int agc=O;
int h=1;

Int I_temp,Q_temp;
Int d=1,s=1,x=0,ARE=0,ctr=O,SRE=0;

FILE *fp,*fpl;

/_ Allocate memory for RAMs AR & SR and ROMs OR & IR */

struct ram

{
int location[t0];

};
struct ram Accumulatlon_RAM_I,Accumulation_RAM_Q;

struct doubleram
{
int location S[9];

Int locatlon_C[9];

};
struct doubleram Storage_RAM;

struct tom

{
int locatlon_S;

int locatlon_C;
};

struct tom Output_ROM;

struct from

{
int location I;

Int locationZQ;
};

struct irom Input_ROM;
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I* Initialize the memory locations */

for (J:1;j<:9;J++)
{
Storage RAM.location S[J]:O;

Storage_RAM.location-C[j]=O;
Accumulation RAM I.location[J]=O;

Accumulation-RAM-Q.location[j]=O;

Input_ROM.lo_ation_I=O;

Input_ROM.location_Q=O;

Output_ROM.location_S=O;

Output_ROM.location_C=O;
}

/* Start the main program */

printf("Enter the count of Address Generator for Samples Please");

print f("\n") ;

scanf( "%d", &count );

fp= fopen ("sam .dat", "r" );

fpl =fopen ("outcar. dat", "w" );

fprintf(fp1,"Enter the count of Address Generator for Samples Please");
fprintf(fpl, "\n");

fprintf(fpl, "count") ;

fprintf(fp1,"%2d", count) ;
fpr intf(fp I,"\n" );

for (k:1;k<=count;k++)
{
fscanf(fp,"%d",&i);
fscanf(fp,"%d",&q);

/* When the clock is negative */

Output_ROM.location_C:adder_I;

Output_ROM.location_S=adder_Q;
/* Read of AR enabled */

if (read_disable==1)
{
adder I=Accumulation RAM I.location[d]+Input ROM.location I;

adder_Q=Accumulation_RAM_Q.location[d]+IDput_ROM.location_Q;
}

/* Read of AR disabled */

if (read_disable::O)
{
adder_I=Input_ROM.location I;
adder_Q=Input_ROM.location[Q;

h=h+1;
if (h>8)

{
h=h-8;

read disable=l;

C'- ______
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}
}

/* Read input samples */

Input_ROM.location I:i;
Input_ROM.locationZQ=q;
if (SRE==I)

{ I* The

Storage_RAM.location C[s]=I temp;
Storage_RAM.locationZS[s]=Q_temp;

s:s+l;
if (s>8)

{
s:s-8;
SRE:O;
}

clock is positive */

l_temp:Output_ROM.location_C;

Q_temp=Output_ROM.location_S;
/* Write enable AR */

if (ARE==I)
{
Accumulation RAM I.location[d]=adder I;

Accumulation3RAM3Q.location[d]:adder3Q;

d=d+1;
if (d>8)

{
d=d-8;

/* Print the data state for all units */

fprintf(fp1,"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
"AGS", "AGC", "IRI", "IRQ", "ARI", "ARQ", "ORC", "ORS", "SRC", "SRS" );

for (J=l ;J<9;J++)
{
fprlntf(fpl

fprintf(fpl

fprlntf(fpl

fprlntf(fpl

fprintf(fpl
fprintf(fpl

fprintf(fpl

fprintf(fpl

fprintf(fpl

fprintf(fpl

fprintf(fpl
}

I=i+I;

,"%qd"
,"%4d"
,"%qd"
,"%4d"
,"%4d"
,"%qd"

,"%qd"

,"%4d"

,"in" )

,Input_ROM.location_I);

,Input_ROM.locatlon Q);
,Accumulation_RAM_I?location[J]);

,Accumulation RAM Q.locatlon[J]);

,Output_ROM.locat_on_C);

,Output ROM.locatlon S);

,Storage_RAM.locatlon C[J]);

,Storage_RAM.location,S[J]);

/* Define the control circuitry */

if (en::1)
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{
if (1==4) SRE=I;
}

if (i==2) ARE=I;

if (i>8)

{
i=(i-8);
agc=agc+ I;

if (agc==3) en=1;

if (agc>3) agc=agc-4;

if (agc==0) en=0;

printf("\n" );

}
if (agc==0)

{
if (I==2) read_disable=O;
}

}
fclose(fp) ;

fclose(fpl );
}
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INPUT FILE FOR MCRM

121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
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OUTPUT FILE OF MCRM

Enter the count of Address Generator for Samples Please
count65

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

1 0 1 2 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0
1 0 1 2. 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0
1 0 1 2 0 0 0 0 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
2 0 1 2 1 2 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 0 1 2 1 2 1 2 0 0
3 0 1 2 1 2 1 2 0 0
3 0 1 2 0 0 1 2 0 0
3 0 1 2 0 0 1 2 0 0
3 0 1 2 0 0 1 2 0 0
3 0 1 2 0 0 1 2 0 0
3 0 1 2 0 0 1 2 0 0
3 0 1 2 0 0 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
4 0 1 2 1 2 1 2 0 0
4 0 1 2 1 2 1 2 0 0
4 0 1 2 1 2 1 2 0 0
4 0 1 2 0 0 1 2 0 0
4 0 1 2 0 0 1 2 0 0
4 0 1 2 0 0 1 2 0 0
4 0 1 2 0 0 1 2 0 0
4 0 1 2 0 0 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 0 1 2 1 2 1 2 0 0
5 0 1 2 1 2 1 2 0 0
5 0 1 2 1 2 1 2 0 0
5 0 1 2 1 2 1 2 0 0
5 0 1 2 0 0 1 2 0 0
5 0 1 2 0 0 1 2 0 0
5 0 1 2 0 0 1 2 0 0
5 0 1 2 0 0 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
6 0 1 2 1 2 1 2 0 0
6 0 1 2 1 2 1 2 0 0
6 0 1 2 1 2 1 2 0 0
6 0 1 2 1 2 1 2 0 0
6 0 1 2 1 2 1 2 0 0
6 0 1 2 0 0 1 2 0 0
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6 0 I 2 0 O I 2 0 0

6 0 I 2 0 O I 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

7 0 1 2 1 2 1 2 0 0
7 0 1 2 1 2 1 2 0 0
7 0 1 2 1 2 1 2 0 0
7 0 1 2 1 2 1 2 0 0
7 0 1 2 1 2 1 2 0 0
7 0 1 2 1 2 1 2 0 0
7 0 1 2 0 0 1 2 0 0
7 0 1 2 0 0 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 1 2 1 2 0 0
8 0 1 2 0 0 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0
1 1 1 2 1 2 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
2 1 1 2 2 /4 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0
2 1 1 2 1 2 1 2 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 1 1 2 2 4 2 /4 0 0
3 1 1 2 2 4 2 4 0 0
3 1 1 2 1 2 2 q 0 0
3 1 1 2 1 2 2 4 0 0
3 1 1 2 1 2 2 4 0 0
3 1 1 2 1 2 2 /4 0 0
3 1 1 2 1 2 2 4 0 0
3 1 1 2 1 2 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
4 1 1 2 2 4 2 4 0 0
4 1 1 2 2 4 2 4 0 0
4 1 1 2 2 Zl 2 LI 0 0
4 1 1 2 1 2 2 4 0 0
4 1 1 2 1 2 2 4 0 0
4 1 1 2 1 2 2 4 0 0
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4 I I 2 I 2 2 4 0 0

4 I I 2 I 2 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 1 1 2 2 4 2 4 0 0
5 1 1 2 2 4 2 4 0 0
5 1 1 2 2 4 2 4 0 0
5 1 1 2 2 4 2 4 0 0
5 1 1 2 1 2 2 4 0 0
5 1 1 2 1 2 2 4 0 0
5 1 1 2 1 2 2 4 0 0
5 1 1 2 1 2 2 ;4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS 5RC SRS
6 1 1 2 2 4 2 4 0 0
6 1 1 2 2 4 2 4 0 0
6 1 1 2 2 4 2 4 0 0
6 1 1 2 2 4 2 4 0 0
6 1 1 2 2 4 2 4 0 0
6 1 1 2 1 2 2 4 0 0
6 1 1 2 1 2 2 4 0 0
6 1 1 2 1 2 2 4 0 0

AGS AGC IRI IRQ ARI ARC) ORC ORS SRC SRS

7 1 1 2 2 4 2 4 0 0
7 1 1 2 2 4 2 ;4 0 0
7 1 1 2 2 4 2 4 0 0
7 1 1 2 2 4 2 4 0 0
7 1 1 2 2 4 2 4 0 0
7 1 1 2 2 4 2 4 0 0
7 1 1 2 1 2 2 4 0 0
'7 1 1 2 1 2 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
8 1 1 2 2 4 2 4 0 0
8 1 1 2 2 4 2 4 0 0
8 1 1 2 2 4 2 4 0 0
8 1 1 2 2 4 2 4 0 0
8 1 1 2 2 ;4 2 4 0 0
8 1 1 2 2 4 2 4 0 0
8 1 1 2 2 4 2 4 0 0
8 1 1 2 1 2 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SItS
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0
1 2 1 2 2 4 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

2 2 1 2 ] 6 2 4 0 0
2 2 1 2 2 4 2 4 0 0
2 2 1 2 2 4 2 4 0 0
2 2 1 2 2 4 2 4 0 0
2 2 1 2 2 4 2 4 0 0
2 2 1 2 2 4 2 4 0 0
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2 2 I 2 2 q 2 4 0 0

2 2 I 2 2 4 2 4 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 2 1 2 3 6 3 6 0 0
3 2 1 2 3 6 3 6 0 0
3 2 1 2 2 /4 3 6 0 0
3 2 1 2 2 LI 3 6 0 0
3 2 1 2 2 4 3 6 0 0
3 2 1 2 2 q 3 6 0 0
3 2 1 2 2 q 3 6 0 0
3 2 1 2 2 ;4 3 6 0 0

AGS AGC IRI IRQ ARI ARC)ORC ORS SRC SRS

q 2 1 2 3 6 3 6 0 0
4 2 1 2 3 6 3 6 0 0
4 2 1 2 3 6 3 6 0 0
4 2 1 2 2 q 3 6 0 0
4 2 1 2 2 4 3 6 0 0
4 2 1 2 2 4 3 6 0 0
4 2 1 2 2 4 3 6 0 0
4 2 I 2 2 4 3 6 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 2 1 2 3 6 3 6 0 0
5 2 I 2 3 6 3 6 0 0
5 2 I 2 3 6 3 6 0 0
5 2 1 2 3 6 3 6 0 0
5 2 1 2 2 tl 3 6 0 0
5 2 1 2 2 q 3 6 0 0
5 2 1 2 2 ;4 3 6 0 0
5 2 1 2 2 q 3 6 0 0

AGS AGC IRI IRO ARI ARQ ORC ORS SRC SRS

6 2 1 2 3 6 3 6 0 0
6 2 1 2 3 6 3 6 0 0
6 2 1 2 3 6 3 6 0 0
6 2 1 2 3 6 3 6 0 0
6 2 1 2 3 6 3 6 0 0
6 2 1 2 2 4 3 6 0 0
6 2 1 2 2 4 3 6 0 0
6 2 1 2 2 q 3 6 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SILS

7 2 1 2 3 6 3 6 0 0
7 2 1 2 3 6 3 6 0 0
7 2 1 2 3 6 3 6 0 0

7 2 1 2 3 6 3 6 o o
7 2 1 2 3 6 3 6 0 0
7 2 1 2 3 6 3 6 0 0
7 2 1 2 2 q 3 6 0 0
7 2 1 2 2 4 3 6 0 0

AGS AGC IRI IRQ ARI ARC)ORC ORS SRC SRS

8 2 1 2 3 6 3 6 0 0
8 2 1 2 3 6 3 6 0 0

8 2 I 2 3 6 3 6 o o
8 2 I 2 3 6 3 6 0 0
8 2 I 2 3 6 3 6 0 0

8 2 I 2 3 6 3 6 0 0
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8 2 I 2 3 6 3 6 0 0
8 2 I 2 2 4 3 6 0 0

AGS AC-C IRI IRQ ARI ARQ ORC ORS SRC SRS
I 3 I 2 3 6 3 6 0 O
I 3 I 2 3 6 3 6 O O
I 3 I 2 3 6 3 6 0 O
I 3 I 2 3 6 3 6 0 0
I 3 I 2 3 6 3 6 0 0
I 3 I 2 3 6 3 6 O O
I 3 I 2 3 6 3 6 O 0
I 3 I 2 3 6 3 6 O 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
2 3 I 2 4 8 3 6 0 O
2 3 I 2 3 6 3 6 O O
2 3 I 2 3 6 3 6 0 0
2 3 I 2 3 6 3 6 0 0
2 3 I 2 3 6 3 6 0 0

2 3 I 2 3 6 3 6 o 0

2 3 I 2 3 6 3 6 O O

2 3 I 2 3 6 3 6 O O
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SItS

3 3 I 2 q 8 4 8 O 0
3 3 I 2 4 8 4 8 O 0

3 3 I 2 3 6 4 8 0 O

3 3 I 2 3 6 4 8 O 0

3 3 I 2 3 6 4 8 0 O
3 3 I 2 3 6 4 8 0 0

3 3 I 2 3 6 4 8 O O
3 3 1 2 3 6 4 8 o o

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

4 3 I 2 4 8 4 8 4 8

4 3 I 2 4 8 4 8 0 O

4 3 I 2 q 8 4 8 0 0

4 3 I 2 3 6 4 8 0 0

4 3 I 2 3 6 4 8 O 0
4 3 I 2 3 6 4 8 O O

4 3 I 2 3 6 4 8 0 O

4 3 I 2 3 6 4 8 0 O
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
5 3 I 2 4 8 4 8 4 8

5 3 I 2 4 8 4 8 4 8

5 3 I 2 4 8 4 8 O 0

5 3 I 2 4 8 4 8 O O

5 3 I 2 3 6 4 8 O O

5 3 I 2 3 6 4 8 O O
5 3 I 2 3 6 4 8 O O

5 3 I 2 3 6 4 8 O 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
6 3 I 2 4 8 4 8 4 8

6 3 I 2 4 8 4 8 4 8

6 3 I 2 4 8 4 8 4 8

6 3 I 2 4 8 4 8 O 0

6 3 1 2 4 8 4 8 0 0
6 3 I 2 3 6 4 8 O O
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6 3 1 2 3 6 4 8 0 0
6 3 1 2 3 6 4 8 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

7 3 1 2 4 8 q 8 4 8
7 3 1 2 4 8 4 8 4 8
7 3 1 2 4 8 4 8 4 8
7 3 1 2 4 8 4 8 4 8
7 3 1 2 4 8 4 8 0 0
7 3 1 2 4 8 4 8 0 0
7 3 I 2 3 6 4 8 0 0

7 3 I 2 3 6 4 8 0 0
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

8 3 1 2 4 8 4 8 4 8
8 3 1 2 4 8 4 8 4 8
8 3 1 2 4 8 4 8 4 8
8 3 1 2 4 8 4 8 4 8
8 3 1 2 4 8 4 8 4 8
8 3 1 2 4 8 4 8 0 0
8 3 1 2 4 8 4 8 0 0
8 3 1 2 3 6 4 8 0 o

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
1 0 1 2 4 8 4 8 4 8
1 0 1 2 /4 8 4 8 4 8
1 0 1 2 4 8 4 8 4 8
1 0 1 2 q 8 4 8 4 8
1 0 1 2 q 8 4 8 4 8
1 0 1 2 q 8 4 8 q 8
1 0 1 2 4 8 q 8 0 0
1 0 1 2 4 8 4 8 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
2 0 1 2 1 2 4 8 4 8
2 0 1 2 q 8 4 8 4 8
2 0 1 2 4 8 4 8 4 8
2 0 1 2 4 8 4 8 4 8
2 0 1 2 4 8 4 8 4 8
2 0 1 2 q 8 4 8 4 8
2 0 1 2 4 8 /4 8 4 8
2 0 1 2 4 8 4 8 0 0

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 0 1 2 1 2 1 2 4 8
3 0 1 2 1 2 1 2 4 8
3 0 1 2 4 8 1 2 4 8
3 o 1 2 q 8 1 2 4 8
3 0 1 2 4 8 1 2 4 8
3 0 1 2 q 8 1 2 4 8
3 0 1 2 4 8 1 2 4 8
3 0 1 2 4 8 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

q 0 1 2 1 2 1 2 4 8
4 0 1 2 1 2 1 2 4 8
4 0 1 2 1 2 1 2 4 8
4 0 1 2 4 8 1 2 4 8
4 0 1 2 4 8 1 2 4 8
q 0 1 2 4 8 1 2 q 8
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4 0 1 2 4 8 1 2 4 8
4 0 1 2 4 8 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 0 1 2 1 2 1 2 4 8
5 0 1 2 1 2 1 2 q 8
5 0 1 2 1 2 1 2 4 8
5 0 1 2 1 2 1 2 4 8
5 0 1 2 tl 8 1 2 tl 8
5 0 1 2 4 8 1 2 4 8
5 0 1 2 4 8 1 2 4 8
5 0 1 2 4 8 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
6 0 1 2 1 2 1 2 tl 8
6 0 1 2 1 2 1 2 4 8
6 0 1 2 1 2 1 2 4 8
6 0 1 2 1 2 1 2 4 8
6 0 1 2 1 2 1 2 /4 8
6 0 1 2 4 8 1 2 tl 8
6 0 1 2 4 8 1 2 4 8
6 0 1 2 4 8 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

7 0 1 2 1 2 1 2 4 8
7 0 1 2 1 2 1 2 4 8
7 0 1 2 1 2 1 2 4 8
7 0 1 2 1 2 1 2 4 8
7 0 1 2 1 2 1 2 4 8
7 0 1 2 1 2 1 2 4 8
7 0 1 2 4 8 1 2 q 8
7 0 1 2 4 8 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SIRS
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 1 2 1 2 4 8
8 0 1 2 4 8 1 2 tl 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 4 8
1 1 1 2 1 2 1 2 /4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SIRS
2 1 1 2 2 t[ 1 2 4 8
2 1 1 2 1 2 1 2 q, 8
2 1 1 2 1 2 1 2 tl 8
2 1 1 2 1 2 1 2 q 8
2 1 1 2 1 2 1 2 4 8
2 1 1 2 1 2 1 2 tl 8
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2 1 1 2 1 2 1 2 4 8
2 1 1 2 1 2 1 2 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 1 1 2 2 4 2 /4 4 8
3 1 1 2 2 4 2 q 4 8
3 1 1 2 1 2 2 4 4 8
3 1 1 2 1 2 2 4 4 8
3 1 1 2 1 2 2 4 4 8
3 1 1 2 1 2 2 /4 4 8
3 1 1 2 1 2 2 q 4 8
3 I I 2 I 2 2 q 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
4 1 1 2 2 q 2 4 4 8
4 1 1 2 2 4 2 4 q 8
4 1 1 2 2 4 2 q 4 8
4 1 1 2 1 2 2 q 4 8
4 I I 2 I 2 2 4 4 8
4 I I 2 I 2 2 4 4 8

4 I I 2 I 2 2 4 4 8

4 1 1 2 1 2 2 4 4 8
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 1 1 2 2 4 2 q 4 8
5 1 1 2 2 4 2 4 q 8
5 1 1 2 2 4 2 4 4 8
5 1 1 2 2 /4 2 4 q 8
5 1 1 2 1 2 2 4 4 8
5 1 1 2 1 2 2 4 4 8
5 1 1 2 1 2 2 4 4 8
5 1 1 2 1 2 2 4 4 8

AGS AC,C IRI IRQ ARI ARQ ORC ORS SRC SRS
6 1 1 1 2 q 2 4 4 8
6 1 1 1 2 4 2 4 q 8
6 1 1 1 2 4 2 4 4 8
6 1 1 1 2 4 2 q 4 8
6 1 1 1 2 4 2 4 4 8
6 1 1 1 1 2 2 4 4 8
6 1 1 1 1 2 2 4 4 8
6 1 1 1 1 2 2 4 q 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS
? 1 1 1 2 4 2 4 4 8
? 1 1 1 2 4 2 4 4 8
7 1 1 1 2 4 2 4 4 8
7 1 1 1 2 4 2 4 4 8
7 1 1 1 2 q 2 4 /4 8
7 1 1 1 2 3 2 4 q 8
7 1 1 1 1 2 2 4 4 8
7 1 1 1 1 2 2 q 4 8

AGS AC,C IRI IRQ ARI ARQ ORC ORS SRC SRS
8 1 1 1 2 4 2 3 q 8
8 1 1 1 2 q 2 3 q 8
8 1 1 1 2 q 2 3 4 8
8 1 1 1 2 q 2 3 /4 8
8 1 1 1 2 q 2 3 q 8
8 1 1 1 2 3 2 3 4 8
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8 1 1 1 2 3 2 3 4 8
8 1 1 1 1 2 2 3 4 8

AGS AGC IRI IRQ ARI ARq ORC ORS SRC SRS

1 2 1 1 2 4 2 3 4 8
1 2 1 1 2 4 2 3 4 8
1 2 1 1 2 4 2 3 q 8
1 2 1 1 2 4 2 3 4 8
1 2 1 1 2 4 2 3 4 8
1 2 1 1 2 3 2 3 4 8
1 2 1 1 2 3 2 3 4 8
1 2 1 1 2 3 2 3 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

2 2 1 1 3 5 2 3 4 8
2 2 1 1 2 4 2 3 q 8
2 2 1 1 2 4 2 3 4 8
2 2 1 1 2 4 2 3 4 8
2 2 1 1 2 4 2 3 4 8
2 2 1 1 2 3 2 3 4 8
2 2 1 1 2 3 2 3 4 8
2 2 I I 2 3 2 3 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 2 I I 3 5 3 5 4 8

3 2 I I 3 5 3 5 4 8

3 2 I I 2 4 3 5 4 8

3 2 I I 2 4 3 5 4 8
3 2 I I 2 4 3 5 4 8

3 2 1 1 2 3 3 5 4 8
3 2 1 1 2 3 3 5 4 8
3 2 1 1 2 3 3 5 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

4 2 I I 3 5 3 5 4 8

4 2 I I 3 5 3 5 4 8

4 2 I I 3 5 3 5 4 8

4 2 I I 2 4 3 5 4 8

4 2 I I 2 4 3 5 4 8
4 2 I I 2 3 3 5 4 8

4 2 1 1 2 3 3 5 4 8
4 2 1 1 2 3 3 5 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 2 1 1 3 5 3 5 4 8
5 2 1 1 3 5 3 5 4 8
5 2 1 1 3 5 3 5 4 8
5 2 1 1 3 5 3 5 4 8
5 2 1 1 2 4 3 5 4 8
5 2 1 1 2 3 3 5 4 8
5 2 I I 2 3 3 5 4 8
5 2 I I 2 3 3 5 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

6 2 I I 3 5 3 5 4 8

6 2 I I 3 5 3 5 4 8
6 2 I I 3 5 3 5 4 8

6 2 I I 3 5 3 5 4 8

6 2 1 1 3 5 3 5 4 8
6 2 I I 2 3 3 5 4 8
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6 2 1 1 2 3 3 5 4 8
6 2 1 1 2 3 3 5 4 8

AGS AGC IRI IRQ ARI ARQ OR(: ORS SRC SRS

7 2 1 1 3 5 3 5 4 8
7 2 1 1 3 5 3 5 4 8
7 2 1 1 3 5 3 5 4 8
7 2 1 1 3 5 3 5 /4 8
7 2 1 1 3 5 3 5 4 8
7 2 1 1 3 4 3 5 4 8
7 2 1 1 2 3 3 5 4 8
7 2 1 1 2 3 3 5 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

8 2 1 1 3 5 3 4 4 8
8 2 1 1 3 5 3 4 4 8
8 2 1 1 3 5 3 /4 4 8
8 2 1 1 3 5 3 4 4 8
8 2 1 1 3 5 3 4 4 8
8 2 1 1 3 4 3 4 4 8
8 2 1 1 3 4 3 4 4 8
8 2 1 1 2 3 3 4 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

I 3 I I 3 5 3 4 4 8
I 3 I I 3 5 3 4 4 8

I 3 I I 3 5 3 4 4 8

I 3 I I 3 5 3 4 4 8

I 3 I I 3 5 3 4 4 8
I 3 I I 3 4 3 4 4 8

I 3 I I 3 4 3 4 4 8

I 3 1 1 3 4 3 4 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

2 3 1 1 4 6 3 4 4 8
2 3 1 1 3 5 3 4 4 8
2 3 1 1 3 5 3 4 4 8
2 3 1 1 3 5 3 4 4 8
2 3 I I 3 5 3 4 4 8

2 3 I I 3 4 3 4 4 8

2 3 I I 3 4 3 4 4 8

2 3 1 1 3 4 3 4 4 8
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

3 3 1 1 4 6 4 6 4 8
3 3 1 1 4 6 4 6 4 8
3 3 1 1 3 5 4 6 4 8
3 3 1 1 3 5 4 6 4 8
3 3 I I 3 5 4 6 4 8

3 3 I 1 3 4 4 6 4 8
3 3 1 1 3 4 4 6 4 8
3 3 I I 3 4 4 6 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

4 3 I I 4 6 4 6 4 6
4 3 I I 4 6 4 6 4 8
4 3 I I 4 6 4 6 4 8
4 3 I I 3 5 4 6 4 8
4 3 I I 3 5 4 6 4 8
4 3 I I 3 4 4 6 4 8
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4 3 I I 3 4 4 6 4 8
4 3 I I 3 4 4 6 4 8

AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

5 3 I I 4 6 4 6 4 6

5 3 I I 4 6 4 6 4 6

5 3 I I 4 6 4 6 4 8
5 3 I I 4 6 4 6 4 8

5 3 1 1 3 5 4 6 4 8

5 3 I I 3 4 4 6 4 8

5 3 I I 3 4 4 6 4 8

5 3 I I 3 4 4 6 4 8
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

6 3 I I 4 6 4 6 4 6

6 3 I I 4 6 4 6 4 6

6 3 I I 4 6 4 6 4 6

6 3 I I 4 6 4 6 4 8

6 3 I I 4 6 4 6 4 8

6 3 I I 3 4 4 6 4 8

6 3 I I 3 4 4 6 4 8

6 3 I I 3 4 4 6 4 8
AGS AGC IRI IRQ ARI ARQ ORC ORS SRC SRS

7 3 I I 4 6 4 6 4 6

7 3 I I 4 6 4 6 4 6

7 3 I I _ 6 4 6 4 6
7 3 I I 4 6 4 6 4 6

7 3 I I _ 6 4 6 4 8

7 3 I I 4 5 4 6 4 8

7 3 I I 3 4 4 6 4 8

7 3 I I } 4 4 6 4 8
AGS AGC IRI IRQ _I ARQ ORC ORS SRC SRS

8 3 I I 4 6 4 5 4 6
8 3 I I ; 6 4 5 4 6
8 3 I I _ 6 4 5 4 6
8 3 I I I 6 4 5 4 6
8 3 I I _' 6 4 5 4 6
8 3 I I : 5 4 5 4 8

8 3 I I i 5 4 5 4 8
8 3 I I 4 4 5 4 8
AGS AGC IRI IRQ . I ARQ ORC ORS SRC SRS

I 0 I I 6 4 5 4 6
I 0 I I 6 4 5 4 6
I 0 I I 6 4 5 4 6
I 0 I I 6 4 5 4 6
I 0 I I 6 4 5 4 6
1 0 1 1 5 4 5 4 5
1 0 1 1 5 4 5 4 8
I 0 I I 5 4 5 4 8
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PROGRAMS

Appendix C

IN C AND SIMULATION RESULTS FOR DATA
IN THE HARDWARE DESIGN OF MRBS

FLOW OF SAMPLES
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/* Hardware behavioural simulation for Multiplexed RAM
Buffer for Samples (MRBS) */

/* This program describes the data flow for storage of

input samples for 8 channels for an estimation period of
4 samples for each channel */

/* agc is Address Generator for Channels

1 is Address Generator for Samples */

#include <stdio.h>

main()

{
int 1=I;

int agc:O;

int count,m,n,k,i,J;
FILE *fp,*fpl;

struct rambuffer

{
Int latch;

int location[9];
};

struct rambuffer ram[5];

for (i:1;i<:4;i++)
{
for (J=1;J<=8;J++)

{
ram[i].location[J]=O;

}
ram[i].latch=O;
}

/* Allocate memory for RAMs */

/* Initialization of memory */

/* Start Main program */

printf("Enter the count of Address Generator for Samples Please");
printf( "\n" );

scanf("%d", &count) ;

fpl =fopen( "outram. c", "w" );

fp: fopen( "sampl. c", "r" );
fprlntf(fp1,"Enter the count of Address Generator for Samples Please");

fprintf(fpl, "\n" );

fprintf(fpl, "count") ;

fprlntf(fpl, "%2d", count);

fprintf(fpl, "\n") ;

for (i:1;l<:count;i++)
{
fscanf(fp,"%d",&k);
ram[1].latch=k;

for (m=2;m<5;m++)
{
ram[m].latch=ram[m-1].location[l];

/* Memory read */
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}
for (m:1;m<5;m++)

[
ram[ m].location[ i]=ram[ m ].latch ;

}

/* Memory write */

/* Display MRBS structure */

fprintf(fpl,"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
"AGS", "AGC", "LA 1", "RA 1", "LA2", "I_A2", "L_3", "RA3", "LA4", "RA4" ) ;

for (j=l;j<9;j++)
{
fprintf(fpl ,"%2d" ,i) ;

fprintf(fpl, "%4d" ,agc);

for (n=1;n<5;n++)
{
fprlntf(fp1,"%4d",ram[n].latch) ;

fprintf(fpl ,"%4d" ,ram[n]. locatlon[ J ]};

}
fpr intf(fpl, "\n" );

}

i:i+I;
if (i>8)

{
i:I-8;

agc=agc+1;

if (agc>3)
}

}
[close([p);

fclose(fpl);

}

agc:agc-4;

/* Increment AGC and AGS */



01 02 03 04 05 06 07 08 11 12 13 14 15
16 17 18 21 22 23 24 25 26 27 28 31 32
33 34 35 36 37 38 41 42 43 44 45 46 47

48 51 52 53 54 56 57 58 61 62 63 64 65
66 67 68
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OUTPUT FILE OF MRBS

Enter the count of Address Generator for Samples Please
count30

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
1 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
2 0 2 1 0 0 0 0 0 0
2 0 2 2 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

3 0 3 I 0 0 0 o o 0

3 o 3 2 0 o 0 0 0 0

3 o 3 3 o o o o o o

3 o 3 o o o o o o o

3 o 3 o o o o o o o

3 o 3 o o o o o o o
3 o 3 o o o o o o o

3 o 3 o o o o o o o

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
4 0 4 I 0 0 0 0 0 0

4 0 4 2 0 0 0 0 0 0

4 0 4 3 0 0 0 0 0 0
4 0 4 4 0 0 0 0 0 0

4 0 4 0 0 0 0 0 0 0

4 0 4 0 0 0 0 0 0 0

4 0 4 0 0 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0

AGS AGC LAI EAI LA2 RA2 LA3 RA3 LA4 EA4

5 0 5 I 0 0 0 0 0 0
5 0 5 2 0 0 0 0 0 0

5 0 5 3 0 0 0 0 0 0
5 0 5 4 0 0 0 0 0 0

5 0 5 5 0 0 0 0 0 0

5 0 5 0 0 0 0 0 0 0
5 0 5 0 0 0 0 0 0 0
5 0 5 0 0 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 EA4
6 0 6 I 0 0 0 0 0 0

6 0 6 2 0 0 0 0 0 0

6 0 6 3 0 0 0 0 0 0
6 0 6 4 0 0 0 0 0 0

6 0 6 5 0 0 0 0 0 0

6 0 6 6 0 0 0 0 0 0
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6 0 6 0 0 0 0 0 0 0
6 0 6 0 0 0 0 0 0 0

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LA4 RA4
7 0 7 1 0 0 0 0 0 0
7 0 7 2 0 0 0 0 0 0
7 0 T 3 0 0 0 0 0 0
T 0 7 4 0 0 0 0 0 0
7 0 7 5 0 0 0 0 0 0

7 0 7 6 0 0 0 0 0 0

7 0 7 7 0 0 0 0 0 0

7 0 7 0 0 0 0 0 0 0

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LA4 RA4
8 0 8 I 0 0 0 0 0 0

8 0 8 2 0 0 0 0 0 0

8 0 8 3 0 0 0 0 0 0
8 0 8 4 0 0 0 0 0 0

8 0 8 5 0 o 0 o 0 0

8 o 8 6 0 o o 0 0 o

8 0 8 7 o o o 0 o o

8 0 8 8 0 0 0 0 0 0
AGS AGC LAI RAt LA2 RA2 LA3 RA3 LA4 RA4

1 1 11 11 1 1 0 0 0 0
1 1 11 2 1 0 0 0 0 0
1 1 11 3 1 0 0 0 0 0
1 1 11 4 1 0 0 0 0 0
1 1 11 5 1 0 0 0 0 0
1 1 11 6 1 0 0 0 0 0
1 1 11 7 1 0 0 0 0 0
1 1 11 8 1 0 0 0 0 0

AGS AGC LAI RAI LA2 HA2 LA3 RA3 LA4 RA4
2 1 12 11 2 1 0 0 0 0
2 1 12 12 2 2 0 0 0 0
2 1 12 3 2 0 0 0 0 0
2 1 12 4 2 0 0 0 0 0
2 1 12 5 2 0 0 0 0 0
2 1 12 6 2 0 0 0 0 0
2 1 12 7 2 0 0 0 0 0
2 1 12 8 2 0 0 0 0 0

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LAq RA4
3 1 13 11 3 1 0 0 0 0

3 I 13 12 3 2 o o o o
3 I 13 13 3 3 o o o o
3 1 13 4 3 0 o 0 o o
3 1 13 5 3 o 0 0 0 0
3 1 13 6 3 0 o o o o
3 1 13 7 3 0 0 0 0 0
3 1 13 8 3 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
q 1 14 11 4 1 0 0 0 0
4 1 14 12 4 2 0 0 0 0
4 1 lq 13 4 3 0 0 0 0
4 1 lq 14 4 q 0 0 0 0
4 1 lq 5 4 0 0 0 0 0
4 1 14 6 4 0 0 0 0 0
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4 1 14 7 4 0 0 0 0 0
4 1 14 8 4 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

5 I 15 11 5 I 0 0 0 0
5 I 15 12 5 2 0 0 0 0

5 I 15 13 5 3 0 0 0 0
5 I 15 14 5 4 0 0 0 0

5 1 15 15 5 5 0 0 0 0
5 1 15 6 5 0 0 0 0 0

5 1 15 7 5 0 0 0 0 0
5 1 15 8 5 0 0 0 0 0
AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
6 1 16 11 6 I 0 0 0 0

6 I 16 12 6 2 0 0 0 0

6 I 16 13 6 3 0 0 0 0
6 I 16 14 6 4 0 0 0 0

6 1 16 15 6 5 0 0 0 0
6 1 16 16 6 6 0 0 0 0
6 1 16 7 6 0 0 0 0 0
6 1 16 8 6 0 0 0 0 0

AGS AGC LAI RAt LA2 RA2 LA3 RA3 LA4 RA4
7 1 17 11 7 1 0 0 0 0
7 1 17 12 7 2 0 0 0 0
7 1 17 13 7 3 0 0 0 0
7 1 17 14 7 4 0 0 0 0
7 1 17 15 7 5 0 0 0 0
7 1 17 16 7 6 0 0 0 0
7 1 17 17 7 7 0 0 0 0
7 1 17 8 7 0 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
8 1 18 11 8 1 0 0 0 0
8 1 18 12 8 2 0 0 0 0
8 1 18 13 8 3 0 0 0 0
8 1 18 14 8 4 0 0 0 0
8 1 18 15 8 5 0 0 0 0
8 1 18 16 8 6 0 0 0 0
8 I 18 17 8 7 0 0 0 0
8 1 18 18 8 8 0 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
1 2 21 21 11 11 1 1 0 0
1 2 21 12 11 2 1 0 0 0
1 2 21 13 11 3 1 0 0 0
1 2 21 14 11 4 1 0 0 0
1 2 21 15 11 5 1 0 0 0
1 2 21 16 11 6 1 0 0 0
1 2 21 17 11 7 1 0 0 0
1 2 21 18 11 8 1 0 0 0

AGS AGC LA1 HA1 LA2 RA2 LA3 RA3 LA4 RA4
2 2 22 21 12 11 2 1 0 0
2 2 22 22 12 12 2 2 0 0
2 2 22 13 12 3 2 0 0 0
2 2 22 14 12 4 2 0 0 0
2 2 22 15 12 5 2 0 0 0
2 2 22 16 12 6 2 0 0 0
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2 2 22 17 12 7 2 0 0 0
2 2 22 18 12 8 2 0 0 0

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LA4 RA4
3 2 23 21 13 11 3 1 0 0
3 2 23 22 13 12 3 2 0 0
3 2 23 23 13 13 3 3 0 0
3 2 23 14 13 4 3 0 0 0
3 2 23 15 13 5 3 0 0 0
3 2 23 16 13 6 3 0 0 0
3 2 23 17 13 7 3 o 0 0
3 2 23 18 13 8 3 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
4 2 24 21 14 11 4 I 0 0

4 2 24 22 14 12 4 2 0 0

4 2 24 23 14 13 4 3 0 0
4 2 24 24 14 14 4 4 0 0

4 2 24 15 14 5 4 0 0 0
4 2 2q 16 14 6 4 0 0 0

4 2 24 17 14 7 4 0 0 0
4 2 24 18 14 8 4 0 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
5 2 25 21 15 11 5 1 0 0
5 2 25 22 15 12 5 2 0 0
5 2 25 23 15 13 5 3 0 0
5 2 25 24 15 14 5 4 0 0
5 2 25 25 15 15 5 5 0 0
5 2 25 16 15 6 5 0 0 0
5 2 25 17 15 7 5 0 0 0
5 2 25 18 15 8 5 0 0 0
AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
6 2 26 21 16 11 6 I 0 0
6 2 26 22 16 12 6 2 0 0
6 2 26 23 16 13 6 3 0 0
6 2 26 2q 16 lq 6 4 0 0
6 2 26 25 16 15 6 5 0 0
6 2 26 26 16 16 6 6 0 0
6 2 26 17 16 7 6 0 0 0
6 2 26 18 16 8 6 0 0 0

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LA4 RA4
2 27 21 17 11 7 1 0 0
2 27 22 17 12 7 2 0 0
2 27 23 17 13 7 3 0 0
2 27 24 17 14 7 4 0 0
2 27 25 17 15 7 5 0 0
2 27 26 17 16 7 6 0 0
2 27 27 17 17 ? 7 0 0
2 27 18 17 8 7 O 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
2 28 21 18 11 8 1 0 0
2 28 22 18 12 8 2 0 0
2 28 23 18 13 8 3 0 0
2 28 24 18 14 8 4 0 0
2 28 25 18 15 8 5 0 0
2 28 26 18 16 8 6 0 0
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8 2 28 27 18 17 8 7 0 0
8 2 28 28 18 18 8 8 0 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

1 3 31 31 21 21 11 11 1 1
1 3 31 22 21 12 11 2 1 0
1 3 31 23 21 13 11 3 1 0
I 3 31 24 21 14 11 4 I 0

I 3 31 25 21 15 11 5 I O

I 3 31 26 21 16 11 6 I 0

I 3 31 27 21 17 11 7 I 0

1 3 31 28 21 18 11 8 1 0
AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

2 3 32 31 22 21 12 11 2 1
2 3 32 32 22 22 12 12 2 2
2 3 32 23 22 13 12 3 2 0
2 3 32 24 22 14 12 4 2 O

2 3 32 25 22 15 12 5 2 0
2 3 32 26 22 16 12 6 2 0

2 3 32 27 22 17 12 7 2 O

2 3 32 28 22 18 12 8 2 O

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

3 3 33 31 23 21 13 11 3 I
3 3 33 32 23 22 13 12 3 2
3 3 33 33 23 23 13 13 3 3
3 3 33 2q 23 14 13 4 3 0
3 3 33 25 23 15 13 5 3 0
3 3 33 26 23 16 13 6 3 0
3 3 33 27 23 17 13 7 3 0
3 3 33 28 23 18 13 8 3 0

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
4 3 34 31 24 21 14 11 4 I

4 3 34 32 24 22 14 12 4 2

4 3 34 33 24 23 14 13 4 3

4 3 34 34 24 24 14 14 4 4

4 3 34 25 24 15 14 5 4 0
4 3 34 26 24 16 14 6 4 0

4 3 34 27 24 17 14 7 4 O

4 3 34 28 24 18 14 8 4 O

AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4
5 3 35 31 25 21 15 11 5 1
5 3 35 32 25 22 15 12 5 2
5 3 35 33 25 23 15 13 5 3
5 3 35 34 25 24 15 14 5 4

5 3 35 35 25 25 15 15 5 5
5 3 35 26 25 16 15 6 5 0

5 3 35 27 25 17 15 7 5 0

5 3 35 28 25 18 15 8 5 0
AGS AGC LAI RAI LA2 RA2 LA3 RA3 LA4 RA4

6 3 36 31 26 21 16 11 6 1
6 3 36 32 26 22 16 12 6 2
6 3 36 33 26 23 16 13 6 3
6 3 36 34 26 24 16 14 6 4

6 3 36 35 26 25 16 15 6 5
6 3 36 36 26 26 16 16 6 6
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6 3 36 2? 26 17 16 ? 6 0
6 3 36 28 26 18 16 8 6 0



- 114

Appendix D

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN
THE HARDWARE DESIGN OF MDRM
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/_ Hardware behavioural simulation for Multiplexed

Data Recovery Module (MDRM) ,/

/* This program describes the data flow in the MDRM
for 8 channels and 4 sample estimation period */

#include <stdio.h>

/, ag c is Address Generator for Channels
1 is Address Generator for Samples */

main()
{ /* Initialize variables */

int i=I,d=I;
int we:O,agc:O;

int count,m,k,l,J,q,s,c,I_inv,Q_inv;

FILE *fp, *fpl;

int mult[5];
int add,sub,latch[3];

/* Define DDR memory structure */

struct ram

{
int location I[9];

int location[Q[9];

};
struct ram DDR;

/* Iniatialization */

for (J:l;J<9;J++)
{
add=O;
sub:O;
latch[1]=O;

latch[2]=O;

DDR.location I[J]=O;

DDR.locatton_Q[J]:O;
}

printf("Enter the count of Address Generator for Samples Please");

print f("\n" );
scanf( "%d" ,&count) ;

fp= fopen ("sadat .c","r" );

fpl =fopen( "outdat .c","w" );
/* Start main program */

fprintf(fp1,"Enter the count of Address Generator for Samples Please");

fprint f(fpl, "\n" );
fprintf(fpl, "count") ;

fprintf(fpl, "%2d", count) ;

fprintf( fpl, "\n" );

/* Describe data flow */

for (k=1;k<:count;k++)



116

if

{
fscanf (fp, "%d" ,&I );

fscanf (fp, "%d" ,&q) ;

fscan f(fp, "%d" ,&s );
fscanf (fp, "%d" ,&c );

latch[1]=add;

latch[2]=sub;
add=mult[1]+mult[2];

sub=mult[S]-mult[4];

mult[1]=i*c;

mult[2]=q*s;

mult[S]=q*c;

mult[4]=i*s;

I* clock is negative *I

/* clock is positive */

/* Print output of MDRM units */

(we::1)
{
DDR.location I[d]=I inv;
PDR.location_Q[d]=Q_inv;
d=d+l;
If (d>8) d:d-8;
}
I inv=latch[1];
Q_lnv=latch[2];

fprintf(fp1,"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",

"AGS", "AGC", "MU I","MU2", "MU3", "MU4", "ADD", "SUB", "LA I", "LA2", "DDI", "DDQ" );

for (J=1;j<9;J++)
{
fprintf(fpl ,"%2d"

fprintf(fpl ,"%4d"

fprintf( fp I,"%4d"

fprintf(fpl ,"%4d"

fprint f(fp I,"%4d"
fpr int f(fp I,"%4d"

fpr intf (fp I,"%4d"

fprlntf(fpl ,"%4d"

fpr int f(fpl, "%4d"
fpr intf(fp I,"%4d"

fprintf( fpl ,"%4d"

fprintf( fpl, "%4d"

fprint f(fpl, "\n" )
}

fprintf(fpl, "\n" );
1=1+I ;

If (I==4) we=l;
if (1>8)
{

1=1-8;

agc=agc+1 ;
if (agc>3)

printf( "\n" );
}
}

,i);

,agc);

,mult[1]);
,muzt[2]);
,mult[3]);

,mult[4]);

,add);
,sub);

,latch[I]);
.latch[2]);
,DDR.locatton I[J]);
,DDR.location_Q[J]);

agc:agc-4;
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fclose(fp);

fclose(fpl);
}
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INPUT FILE FOR MDRM

123456789101112
123456789101112

123456789101112

123456789101112

123456789101112
123456789101112

123456789101112

123456789101112

123456789101112
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OUTPUT FILE OF MDRM

Enter the count of Address Generator for Samples Please
count20
AGS AGC MU1 MU2 HU3 HU4 ADD SUB LA1 LA2 DDI DDQ

1 0 4 6 8 3 0 0 0 0 0 0
1 0 4 6 8 3 0 0 0 0 0 0
1 0 4 6 8 3 0 0 0 0 0 0
1 0 4 6 8 3 0 0 0 0 0 0
1 0 4 6 8 3 0 0 0 0 0 0
1 0 4 6 8 3 0 0 0 0 0 0
I 0 4 6 8 3 0 0 0 0 0 0

I 0 4 6 8 3 0 0 0 0 0 0

AGS AGC N1J1 NU2 MU3 MU4 ADD SUB LA1 LA2 DDI DDQ
2 0 40 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0
2 0 qO 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0
2 0 40 42 48 35 10 5 0 0 0 0

AGS AGC l_J1 l_J2 l_J3 HU4 ADD SUB LA1 LA2 DDI DDQ
3 0 108 110 120 g9 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0
3 0 108 110 120 99 82 13 10 5 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ

4 0 q 6 8 3 218 21 82 13 10 5
4 0 4 6 8 3 218 21 82 13 0 0
4 0 4 6 8 3 218 21 82 13 0 0
4 0 4 6 8 3 218 21 82 13 0 0
4 0 4 6 8 3 218 21 82 13 0 0
4 0 4 6 8 3 218 21 82 13 0 0

0 4 6 8 3 218 21 82 13 0 0
4 0 4 6 8 3 218 21 82 13 0 0

AGS AGC MU1 HU2 MU3 MU4 ADD SUB LA1 LA2 DDI DDQ
5 0 40 42 48 35 10 5 218 21 10 5
5 0 40 42 48 35 10 5 218 21 82 13
5 0 40 42 48 35 10 5 218 21 0 0
5 0 40 42 48 35 10 5 218 21 0 0
5 0 40 42 48 35 10 5 218 21 0 0
5 0 40 42 48 35 10 5 218 21 0 0
5 0 40 42 48 35 10 5 218 21 0 0
5 0 40 42 48 35 10 5 218 21 0 0

AGS AGC HU1 HU2 HU3 HU4 ADD SUB LA1 LA2 DDI DDQ
6 0 108 110 120 99 82 13 10 5 10 5
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6 0 108 110 120 99 82 13 10 5 82 13
6 0 108 110 120 99 82 13 10 5 218 21
6 0 108 110 120 99 82 13 10 5 0 0
6 0 108 110 120 99 82 13 10 5 0 0
6 0 108 110 120 99 82 13 10 5 0 0
6 0 108 110 120 99 82 13 10 5 0 0
6 0 108 110 120 99 82 13 10 5 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DIX)

7
7
7
7
7
7
7
7

0 4 6 8 3 218 21 82 13 10 5
0 4 6 8 3 218 21 82 13 82 13
0 4 6 8 3 218 21 82 13 218 21
0 4 6 8 3 218 21 82 13 10 5
0 4 6 8 3 218 21 82 13 0 0
0 4 6 8 3 218 21 82 13 0 0
0 4 6 8 3 218 21 82 13 0 0
0 4 6 8 3 218 21 82 13 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ

8 0 40 42 48 35 10
8 0 40 42 48 35 10
8 0 40 42 48 35 10
8 0 40 42 48 35 10
8 0 40 42 48 35 10
8 0 40 42 48 35 10

8 0 40 42 48 35 10

8 0 40 42 48 35 10

5 218 21 10 5
5 218 21 82 13
5 218 21 218 21
5 218 21 10 5
5 218 21 82 13
5 218 21 0 0
5 218 21 0 0
5 218 21 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ

1 108 110 120 99 82 13 10 5 10 5
1 108 110 120 99 82 13 10 5 82 13
1 108 110 120 99 82 13 10 5 218 21
1 108 110 120 99 82 13 10 5 10 5
1 108 110 120 99 82 13 10 5 82 13
1 108 110 120 99 82 13 10 5 218 21
1 108 110 120 99 82 13 10 5 0 0
1 108 110 120 99 82 13 10 5 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
2 I 4 6 8

2 I 4 6 8

2 I 4 6 8

2 I 4 6 8

2 I 4 6 8
2 I 4 6 8

2 I 4 6 8

2 I 4 6 8

3 218 21 82 13 10 5

3 218 21 82 13 82 13

3 218 21 82 13 218 21

3 218 21 82 13 10 5
3 218 21 82 13 82 13

3 218 21 82 13 218 21

3 218 21 82 13 10 5

3 218 21 82 13 0 0

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ

3 1 40 42 48 35 10 5 218 21 10 5

3 1 40 42 48 35 10 5 218 21 82 13
3 1 40 42 48 35 10 5 218 21 218 21

1 40 42 48 35 10 5 218 21 10 5
3 1 40 42 48 35 10 5 218 21 82 13
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3 1 40 42 48 35 10 5 218 21 218 21
3 1 40 42 48 35 10 5 218 21 10 5
3 1 40 42 48 35 10 5 218 21 82 13

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
4 1 108 110 120 99 82 13 10 5 218 21
4 1 108 110 120 99 82 13 10 5 82 13
4 1 108 110 120 99 82 13 10 5 218 21
4 1 108 110 120 99 82 13 10 5 10 5
4 1 108 110 120 99 82 13 10 5 82 13
4 1 108 110 120 99 82 13 10 5 218 21
4 1 108 110 120 99 82 13 10 5 10 5
4 1 108 110 120 99 82 13 10 5 82 13

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
5 1 4 6

5 1 4 6

5 1 4 6
5 1 4 6

5 1 4 6

5 1 4 6

5 1 4 6

5 1 4 6

8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 82 13
8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 82 13

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
6

6

6
6

6

6

6

6

1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10
1 40 42 48 35 10

5 218 21 218 21
5 218 21 10 5
5 218 21 82 13
5 218 21 10 5
5 218 21 82 13
5 218 21 218 21
5 218 21 10 5
5 218 21 82 13

AGS AGC HIll NU2 MU3 I_4 ADD SUB LAI LA2 DDI DDQ

7 1 108 110 120 99 82 13 10 5 218 21
7 1 108 110 120 99 82 13 10 5 10 5
7 1 108 110 120 99 82 13 10 5 82 13
7 1 108 110 120 99 82 13 10 5 218 21
7 1 108 110 120 99 82 13 10 5 82 13
7 1 108 110 120 99 82 13 10 5 218 21
7 1 108 110 120 99 82 13 10 5 10 5
7 1 108 110 120 99 82 13 10 5 82 13

AGS AGC MU1 MU2 HU3 MU4 ADD SUB LA1 LA2 DDI DDQ
8 1 4 6
8 1 4 6
8 1 4 6
8 1 4 6
8 1 4 6
8 1 /4 6
8 1 4 6
8 1 4 6

8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 82 13
8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 218 21
8 3 218 21 82 13 10 5
8 3 218 21 82 13 82 13
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AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
2 40 42 48 35 10
2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10
2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10

5 218 21 218 21
5 218 21 10 5
5 218 21 82 13
5 218 21 218 21
5 218 21 10 5
5 218 21 82 13
5 218 21 10 5
5 218 21 82 13

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
2 2 108 110 120 99 82 13 10 5 218 21

2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10
2 2 108 110 120 99 82 13 10

5 10 5
5 82 13
5 218 21
5 10 5
5 82 13
5 218 21
5 82 13

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ
3 2 4 6 8

3 2 4 6 8

3 2 4 6 8

3 2 4 6 8

3 2 4 6 8
3 2 4 6 8

3 2 4 6 8

3 2 4 6 8

3 218 21 82 13 218 21
3 218 21 82 13 10 5
3 218 21 82 13 82 13
3 218 21 82 13 218 21
3 218 21 82 13 10 5

3 218 21 82 13 82 13
3 218 21 82 13 218 21
3 218 21 82 13 10 5

AGS AGC MUI MU2 MU3 MU4 ADD SUB LAI LA2 DDI DDQ

4 2 40 42 48 35 10 5 218 21 82 13
4
4
4
4
4
4
4

2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10
2 40 42 48 35 10

2 40 42 48 35 10

2 40 42 48 35 10

5 218 21 10 5
5 218 21 82 13
5 218 21 218 21
5 218 21 10 5
5 218 21 82 13
5 218 21 218 21
5 218 21 10 5
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PROGRAMS

Appendix E

IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN THE
HARDWARE DESIGN OF MTRM
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/_ Hardware behavioural simulation for Multiplexed

Timing Recovery Module (MTRM) */

/* This program describes the data flow in the MTRM for
8 channel & 4 samples used for periodic estimation */

#include <stdio.h>

I* 1

agc
te

is Address Generator for Samples
is Address Generator for Channels

is enable for Timing RAM */

/* Define memory for the RAMs */

struct rambuffer

{
int latch;

int location[9];

};
struct rambuffer ram_i[4],ram_q[q];

struct storage
{
int location[9];

};
struct storage Tlming_RAM;

main()

{
/* Start main program */

int LI4=O,LQ4=0,isub=0,qsub=O,add=0,adder=0,imult=0,qmult=O;

Int temp=O,idumLatch=0,qdumLatch=O;

Int l=1,d=1,dd=0;

Int h,p,count,m,J,agc=O;

int te=1,1e=0;

int dummy=O;
Int dum1=O;

int dell,del2,del3;

FILE *fp,*fpl;

int I_s,Q_s,i,y;

printf("Enter the AGS please") ;

print f("\n" );

scanf( "%d", &count) ;

fp: fopen( "tlm I.dat", "r" );
fp I:fopen ("outt Ira.dat", "w" );

for(y:1;y<9;y++)
{
ram i[3].iocation[y]=O;
ram-i[3].latch=O;

ram-q[1].iocatlon[l]=O;

ramZq[1].latch:O;
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}
fprintf(fpl ,"Enter the AGS please") ;
fpr intf( fp I,"\n" );

fprintf(fpl, "Count") ;

fprintf( fpl, "\t" );
fprintf(fpl, "%2d", count);

fprintf(fpl, "\n" );

for (i=1;i<:count;i++)

{
fscanf (fp, "%d" ,&l_s );
fscanf( fp, "%d", &Q_s) ;

/* Input from MDRM */

/* Data flow in the RAM latch design

ram i[1].latch=I s;

ram_q[1].latch=Q[s;
for {m=2;m<4;m++)

[
ram i[m].latch=ram i[m-1].location[l];

}
Ll4=ram i[3].location[l];

for (m=2;m<4;m++)
{
ram_q[m].latch=ram_q[m-1].location[l];
}

LQ4=ram_q[3].location[l];
adder=add + Timing_RAM.locatlon[d];

/* Store data in TR */

add=imult+qmult;

imult=isub*idumLatch;

qmult=qsub*qdumLatch;

for (m=1;m<4;m++) /* Clock is positive */

[
ram_i[m].location[l]:ram_i[m].latch;
}

for (m=1;m<4;m++)

[
ram_q[m].location[l]=ram_q[m].latch;
}

/* Data flow in RAM latch */

idumLatch=ram i[3].latch;

qdumLatch=ram-q[3].latch;
isub=ram i[2]?latch-Ll4;

qsub=ramZq[2].latch-LQ4;

if (dd::l)
{
if(l::4) le=l;
}

/* Control circuitry */

*/
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ff

{
if

(le==1)

(re::1)
{
Timing_RAM.location[d]=adder;

d:d+1;
if (d>8)

[
d:(d-8);

te=2;
}

if (re::2)

{
d:d+1;
if (d>8)

{
d:(d-8);

te:l;
}

}

/* Print data flow in the MTRM */

for (h:l;h<2;h++)
{
fprintf(fp 1,
"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
"AGS", "AGC", "LI3", "RI3", "LI4", "ISB", "IMU',

"LQ I","RQ I", "LQ4", "QSB", "QML", "ADD", "AER", "TIR" );

for (j:l;J<9;j++)
{
fprlntf(fpl,
fprtntf(fpl,
fprintf(fpl,

fprintf(fpl,
fprlntf(fpl,

fprintf(fpl,

fprintf(fpl,

fprintf(fpl,

fprintf(fpl,

fprintf(fpl,

fprintf(fpl,
fprintf(fp|,

fprintf(fp;,

fprintf(fpl,

fprintf(fp;,
fprintf(fp;,

}

"%2d",i);

"%4d",agc);

"%4d",ram_i[3].latch);
"%qd",ram i[3].locatlon[J]);

"%qd",LI_);
"%4d",isub);

"%qd",Imult);

"%4d" ,ram q[ I].latch);
"%qd", ram-q[ I].location[ j] );

"_4d",LQ4T;
"%qd" ,qsub) ;

"%4d", qmult );

"%4d", add );

"%4d" ,adder );

"%4d", Timing_RAM. locat ion [J]);
"\n" ) ;

/* Define Control Logic */

i:i+I;
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if (1,8)
{
I=i-8;

age:age+l;

if (agc==3) dd=1;

if (agc>3) agc=agc-4;
}
printf( "\n" );

}

}
fclose(fp);

fclose(fpl);
}
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INPUT FILE FOR MTR/M

123123123123123123123123123123
123123123123123123123123123123
123123123123123123123123123123
123123123123123123123123123123
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
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OUTPUT FILE OF MTRM

Enter the AGS please
Count 45

AG$ AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QHL ADD AER TIR
1 O 0 0 O 0 0 2 2 0 0 0 0 0 0

1 O 0 0 O 0 0 2 0 0 0 0 0 0 0

1 0 0 0 O 0 0 2 O 0 O 0 0 0 0
1 O 0 0 0 0 0 2 O 0 O 0 0 0 0

1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 2 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
2 0 0 0 0 0 0 1 2 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

3 0 0 0 0 0 0 3 2 0 0 0 0 0 0

3 0 0 0 0 0 0 3 I 0 0 0 0 0 0

3 0 0 0 0 0 0 3 3 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
4 0 0 0 0 0 0 2 2 0 0 0 0 0 0
4 0 0 0 0 0 0 2 1 0 0 0 0 0 0
q 0 0 0 0 0 0 2 3 0 0 0 0 0 0
q 0 0 0 0 0 0 2 2 0 0 0 0 0 0
q 0 0 0 0 0 0 2 0 0 0 0 0 0 0
tl 0 0 0 0 0 0 2 0 0 0 0 0 0 0
4 0 0 0 0 0 0 2 0 0 0 0 0 0 0
q 0 0 0 0 0 0 2 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
5 0 0 0 0 0 0 1 2 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0
5 0 0 0 0 0 0 1 3 0 0 0 0 0 0
5 0 0 0 0 0 0 1 2 0 0 0 0 0 0
5 0 0 0 0 0 0 1 1 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LIq ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

6 0 0 0 0 0 0 3 2 0 0 0 0 0 0
6 0 0 0 0 0 0 3 I 0 0 0 0 0 0

6 0 0 0 0 0 0 3 3 0 0 0 0 0 0

6 0 0 0 0 0 0 3 2 0 0 0 0 0 0

6 0 0 0 0 0 0 3 1 0 0 0 0 0 0
6 0 0 0 0 0 0 3 3 0 0 0 0 0 0
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6 O 0 0 0 0 0 3 O 0 0 0 0 0 0

6 O 0 0 O 0 0 3 0 O 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LOt RQI LQ4 QSB QML ADD AER TIR
7 0 0 0 0 0 0 2 2 0 0 0 0 0 0
7 0 0 0 0 0 0 2 1 0 0 0 0 0 0
7 0 0 0 0 0 0 2 3 0 0 0 0 0 0
7 0 0 0 0 0 0 2 2 0 0 0 0 0 0
7 0 0 0 0 0 0 2 1 0 0 0 0 0 0
7 0 0 0 0 0 0 2 3 0 0 0 0 0 0

7 0 0 0 0 0 0 2 2 0 0 0 0 0 0
7 0 0 0 0 0 0 2 0 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

8 0 0 0 0 0 0 1 2 0 0 0 0 0 0
8 0 0 0 0 0 0 1 1 0 0 0 0 0 0
8 0 0 0 0 0 0 1 3 0 0 0 O 0 0
8 0 0 0 0 0 0 1 2 0 0 0 0 0 0
8 0 0 0 0 0 0 1 1 0 0 0 0 0 0
8 0 0 0 0 0 0 1 3 0 0 0 0 0 0
8 0 0 0 0 0 0 1 2 0 0 0 0 0 0
8 0 0 0 0 0 0 1 1 0 0 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQ1 LQ4 QSB QML ADD AER TIR

1 1 0 0 0 1 0 3 3 0 2 0 0 0 0
1 1 0 0 0 1 0 3 1 0 2 0 0 0 0
1 1 0 0 0 1 0 3 3 0 2 0 0 0 0
1 1 0 0 0 1 0 3 2 0 2 0 0 0 0
1 1 0 0 0 1 0 3 1 0 2 0 0 0 0
1 1 0 0 0 1 0 3 3 0 2 0 0 0 0
1 1 0 0 0 1 0 3 2 0 2 0 0 0 0
1 1 0 0 0 1 0 3 1 0 2 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER T[R

2 1 0 0 0 3 0 2 3 0 1 0 0 0 0
2 1 0 0 0 3 0 2 2 0 1 0 0 0 0
2 1 0 0 0 3 0 2 3 0 1 0 0 0 0
2 1 0 0 0 3 0 2 2 0 1 0 0 0 0
2 1 0 0 0 3 0 2 1 0 1 0 0 0 0
2 1 0 0 0 3 0 2 3 0 1 0 0 0 0
2 1 0 0 0 3 0 2 2 0 1 0 0 0 0
2 1 0 0 0 3 0 2 1 0 1 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

3 1 0 0 0 2 0 1 3 0 3 0 0 0 0
3 1 0 0 0 2 0 1 2 0 3 0 0 0 0
3 1 0 0 0 2 0 1 1 0 3 0 0 0 0
3 1 0 0 0 2 0 1 2 0 3 0 0 0 0
3 1 0 0 0 2 0 1 1 0 3 0 0 0 0
3 I 0 0 0 2 0 I 3 0 3 0 0 0 0

3 I 0 0 O 2 0 I 2 0 3 0 0 0 0

3 1 0 0 0 2 0 1 1 0 3 0 0 0 0
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

4 1 0 0 0 1 0 3 3 0 2 0 0 0 0
4 1 0 0 0 1 0 3 2 0 2 0 0 0 0
4 1 0 0 0 1 0 3 1 0 2 0 0 0 0
4 1 0 0 0 1 0 3 3 0 2 0 0 0 0
4 1 0 0 0 1 0 3 1 0 2 0 0 0 0
4 1 0 0 0 1 0 3 3 0 2 0 0 0 0
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4 I 0 0 0 I 0 3' 2 0 2 0 0 0 0

4 I 0 0 0 I 0 3 I 0 2 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIN

5 1 0 0 0 3 0 2 3 0 1 0 0 0 0
5 1 0 0 0 3 0 2 2 0 1 0 0 0 0
5 1 0 0 0 3 0 2 1 0 1 0 0 0 0
5 I 0 0 0 3 0 2 3 0 I 0 0 0 0
5 1 0 0 0 3 0 2 2 0 1 0 0 0 0
5 1 0 0 0 3 0 2 3 0 1 0 0 0 0
5 1 0 0 0 3 0 2 2 0 1 0 0 0 0
5 1 0 0 0 3 0 2 1 0 1 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

6 I 0 0 0 2 0 I 3 0 3 0 0 0 0

6 1 0 0 0 2 0 1 2 0 3 0 0 0 0
6 1 0 0 0 2 0 1 1 0 3 0 0 0 0
6 1 0 0 0 2 0 1 3 0 3 0 0 0 0
6 I 0 0 0 2 0 I 2 0 3 0 0 0 0

6 1 0 0 0 2 0 1 1 0 3 0 0 0 0
6 I 0 0 0 2 0 I 2 0 3 0 0 0 0

6 1 0 0 0 2 0 1 1 0 3 0 0 0 0
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

7 I 0 0 0 I 0 3 3 0 2 0 0 0 0
7 I 0 0 0 I 0 3 2 0 2 0 0 0 0

? 1 0 0 0 1 0 3 1 0 2 0 0 0 0
7 1 0 0 0 1 0 3 3 0 2 0 0 0 0
7 1 0 0 0 1 0 3 2 0 2 0 0 0 0
? 1 0 0 0 1 0 3 1 0 2 0 0 0 0
? 1 0 0 0 1 0 3 3 0 2 0 0 0 0
7 1 0 0 0 1 0 3 1 0 2 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
8 1 0 0 0 3 0 2 3 0 1 0 0 0 0
8 1 0 0 0 3 0 2 2 0 1 0 0 0 .0
8 1 0 0 0 3 0 2 1 0 1 0 0 0 0
8 1 0 0 0 3 0 2 3 0 1 0 0 0 0
8 1 0 0 0 3 o 2 2 0 1 o o o o
8 1 0 0 0 3 0 2 1 0 1 0 0 0 0
8 1 0 0 0 3 0 2 3 0 1 0 0 0 0
8 1 0 0 0 3 0 2 2 0 1 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
1 2 1 1 0 2 0 1 1 0 3 0 0 0 0
1 2 1 0 0 2 0 1 2 0 3 0 0 0 0
1 2 1 0 0 2 0 1 1 0 3 0 0 0 0
1 2 1 0 0 2 0 1 3 0 3 0 0 0 0
1 2 1 0 0 2 0 1 2 0 3 0 0 0 0
1 2 1 0 0 2 0 1 1 0 3 0 0 0 0
1 2 1 0 0 2 0 1 3 0 3 0 0 0 0
1 2 1 0 0 2 0 1 2 0 3 0 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIN
2 2 3 1 0 I 2 3 1 0 2 6 0 0 0
2 2 3 3 0 1 2 3 3 0 2 6 0 0 0
2 2 3 0 0 1 2 3 1 0 2 6 0 0 0
2 2 3 0 0 I 2 3 3 0 2 6 0 0 O

2 2 3 o o 1 2 3 2 0 2 6 0 0 0
2 2 3 0 0 1 2 3 1 0 2 6 0 0 0
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2 2 3 0 0 1 2 3 3 0 2 6 0 0 0
2 2 3 0 0 1 2 3 2 0 2 6 0 0 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

3 2 2 1 0 3 3 2 1 0 1 2 8 0 0
3 2 2 3 0 3 3 2 3 0 1 2 8 0 0
3 2 2 2 0 3 3 2 2 0 1 2 8 0 0
3 2 2 0 0 3 3 2 3 0 1 2 8 0 o
3 2 2 o 0 3 3 2 2 0 1 2 8 0 o
3 2 2 0 0 3 3 2 1 0 1 2 8 0 0
3 2 2 0 0 3 3 2 3 0 1 2 8 0 0
3 2 2 0 0 3 3 2 2 0 1 2 8 0 0

AGS AGC LI3 RI3 LIq ISB IML LQ1 RQ1 Lqq QSB QML ADD AER TIR

4 2 1 1 0 2 6 1 1 0 3 3 5 8 O
4 2 1 3 0 2 6 1 3 0 3 3 5 8 O
4 2 1 2 0 2 6 1 2 0 3 3 5 8 O
4 2 1 1 0 2 6 1 1 0 3 3 5 8 0
4 2 1 0 0 2 6 1 2 0 3 3 5 8 0
4 2 1 0 0 2 6 1 1 0 3 3 5 8 0
4 2 1 0 0 2 6 1 3 0 3 3 5 8 0
4 2 1 O O 2 6 1 2 O 3 3 5 8 O

AGS AGC LI3 RI3 LI4 ISB IML LOl RQI LQ4 QSB QML ADD AER TIR
5 2 3 1 0 1 2 3 1 0 2 6 9 5 0
5 2 3 3 0 1 2 3 3 0 2 6 9 5 0
5 2 3 2 0 1 2 3 2 0 2 6 9 5 0
5 2 3 1 0 1 2 3 1 0 2 6 9 5 0
5 2 3 3 0 I 2 3 3 0 2 6 9 5 0
5 2 3 0 0 1 2 3 1 0 2 6 9 5 0
5 2 3 0 0 1 2 3 3 0 2 6 9 5 0
5 2 3 0 0 1 2 3 2 0 2 6 9 5 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LO4 qSB QML ADD AER TIR
6 2 2 1 0 3 3 2 1 0 1 2 8 9 0
6 2 2 3 0 3 3 2 3 0 1 2 8 9 0
6 2 2 2 0 3 3 2 2 0 1 2 8 9 0
6 2 2 1 0 3 3 2 1 0 1 2 8 9 0
6 2 2 3 0 3 3 2 3 o 1 2 8 9 0
6 2 2 2 0 3 3 2 2 0 1 2 8 9 0
6 2 2 0 0 3 3 2 3 0 _ 2 8 9 0
6 2 2 0 0 3 3 2 2 0 1 2 8 9 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

7 2 1 1 0 2 6 1 1 0 3 3 5 8 0
7 2 1 3 0 2 6 1 3 0 3 3 5 8 0
7 2 1 2 0 2 6 1 2 0 3 3 5 8 0
? 2 1 1 0 2 6 1 1 0 3 3 5 8 0
7 2 1 3 0 2 6 1 3 0 3 3 5 8 0
7 2 1 2 0 2 6 1 2 0 3 3 5 8 0
7 2 1 1 0 2 6 1 1 0 3 3 5 8 0
7 2 I 0 0 2 6 I 2 0 3 3 5 8 0

AGS AGC LI3 RI3 LIq ISB IML LQ1RQ1LQ4 QSB QHL ADD AER TIR
8 2 3 1 0 1 2 3 1 0 2 6 9 5 0
8 2 3 3 0 1 2 3 3 0 2 6 9 5 0
8 2 3 2 0 1 2 3 2 0 2 6 9 5 0
8 2 3 1 0 1 2 3 1 0 2 6 9 5 0
8 2 3 3 0 1 2 3 3 0 2 6 9 5 0
8 2 3 2 0 1 2 3 2 0 2 6 9 5 0
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8 2 3 1 0 1 2 3 1 O 2 6 9 5 0
8 2 3 3 0 1 2 3 3 0 2 6 9 5 O

AGS AGC LI3 RI3 LI4 ISB IML LQ1 RQ1 LQ4 QSB QML ADD AER TIR
I 3 2 2 I 2 3 2 2 2 -I 2 8 g 0
I 3 2 3 I 2 3 2 3 2 -I 2 8 9 0
I 3 2 2 I 2. 3 2 2 2 -I 2 8 9 0
I 3 2 I I 2 3 2 _ 2 -I 2 8 9 0
1 3 2 3 1 2 3 2 3 2 -1 2 8 9 0
1 3 2 2 1 2 3 2 2 2 -1 2 8 9 0
1 3 2 1 1 2 3 2 1 2 -1 2 8 9 0
I 3 2 3 I 2 3 2 3 2 -I 2 8 9 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

2 3 I 2 3 -I 4 I 2 I 2 -3 5 8 0

2 3 I I 3 -I 4 I I I 2 -3 5 8 0

2 3 I 2. 3 -I 4 I 2 I 2 -3 5 8 0
2 3 1 1 3 -1 4 1 1 1 2 -3 5 8 O
2 3 1 3 3 -1 4 1 3 1 2 -3 5 8 0
2 3 I 2 3 -I 4 I 2 I 2 -3 5 8 0

2 3 1 1 3 -1 4 1 1 1 2 -3 5 8 0
2 3 I 3 3 -I 4 I 3 I 2 -3 5 8 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQ1 LQ4 QSB QML ADD AER TIR
3 3 3 2 2 -I -I 3 2 3 -I 4 I 5 0

3 3 3 I 2 -I -I 3 I 3 -I 4 I 5 o

3 3 3 3 2 -I -I 3 3 3 -I 4 I 5 o

3 3 3 I 2 -I -I 3 I 3 -I q I 5 o

3 3 3 3 2 -1 -1 3 3 3 -1 4 1 5 0
3 3 3 2 2 -1 -1 3 2 3 -1 4 1 5 0
3 3 3 I 2 -I -I 3 I 3 -I 4 I 5 o

3 3 3 3 2 -I -I 3 3 3 -1 4 1 5 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

4 3 2 2 I 2 -3 2 2 2 -I -I 3 I I
4 3 2 I I 2 -3 2 I 2 -I -I 3 I 0

4 3 2 3 I 2 -3 2 3 2 -I -I 3 I 0

4 3 2 2 1 2 -3 2 2 2 -1 -1 3 1 0
4 3 2 3 I 2 -3 2 3 2 -I -I 3 I 0

4 3 2 2 I 2 -3 2 2 2 -I -I 3 I 0
4 3 2 I I 2 -3 2 I 2 -I -I 3 I 0
4 3 2 3 1 2 -3 2 3 2 -1 -1 3 1 0

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

5 3 1 2 3 -1 4 1 2 1 2 -3 -q 3 1
5 3 1 1 3 -1 4 1 1 1 2 -3 -4 3 3
5 3 1 3 3 -1 4 1 3 1 2 -3 -_ 3 0
5 3 1 2 3 -1 4 1 2 1 2 -3 -4 3 0
5 3 I I 3 -I 4 I I I 2 -3 -4 3 0

5 3 1 2 3 -1 4 I 2 1 2 -3 -q 3 0
5 3 I I 3 -I 4 I I I 2 -3 -4 3 O

5 3 I 3 3 -1 4 1 3 I 2 -3 -4 3 0
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

6 3 3 2 2 -1 -1 3 2 3 -I 4 1 -q 1
6 3 3 1 2 -1 -1 3 1 3 -1 4 1 -q 3
6 3 3 3 2 -1 -1 3 3 3 -1 4 1 -q -q
6 3 3 2 2 -1 -1 3 2 3 -1 4 1 -q 0
6 3 3 1 2 -1 -1 3 1 3 -1 4 1 -4 0
6 3 3 3 2 -I -I 3 3 3 -I 4 I -4 0
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6 3 3 I 2 -I -I 3 I 3 -I 4 I -4 0
6 3 3 3 2 -I -I 3 3 3 -I 4 I -4 0
AGS AGC LI3 RI3 LIQ ISB IML LQI RQI Lq4 OSB QI,O.,ADD AER TIR
7 3 2 2 I 2 -3 2 2 2 -I -I 3 I I
7 3 2 I I 2 -3 2 I 2 -I -I 3 I 3

7 3 2 3 I 2 -3 2 3 2 -I -I 3 I -4

7 3 2 2 1 2 -3 2 2 2 -1 -1 3 1 1
7 3 2 1 1 2 -3 2 1 2 -1 -1 3 1 0
7 3 2 3 1 2 -3 2 3 2 -1 -1 3 1 0
7 3 2 2 I 2 -3 2 2 2 -I -I 3 I 0

7 3 2 3 I 2 -3 2 3 2 -I -I 3 I 0

AGS AGC LI3 RI3 LIq ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

8 3 1 2 3 -1 4 1 2 1 2 -3 -4 3 1
8 3 1 1 3 -1 4 1 1 1 2 -3 -4 3 3
8 3 1 3 3 -1 4 1 3 1 2 -3 -4 3 -4
8 3 1 2 3 -1 4 1 2 1 2 -3 -4 3 1
8 3 1 1 3 -1 4 1 1 1 2 -3 -4 3 3
8 3 1 3 3 -1 4 1 3 1 2 -3 -q 3 0
8 3 1 2 3 -1 q 1 2 1 2 -3 -4 3 0
8 3 I I 3 -I 4 I I I 2 -3 -q 3 O

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
3 2 -1 -1 3 3 3 -1 4 1 -4 1o 3

i o 3

i o 3

I o 3
i o 3

i o 3

I o 3

I o 3

1 2 -1 -1 3 1 3 -1 4 1 -4 3
3 2 -1 -1 3 3 3 -1 4 1 -q -4
2 2 -1 -1 3 2 3 -1 4 1 -4 1
1 2 -1 -1 3 1 3 -1 4 1 -q 3

3 2 -I -I 3 3 3 -I q I -4 -q
2 2 -1 -1 3 2 3 -1 q 1 -q 0
1 2 -1 -I 3 I 3 -I 4 1 -4 0

AGS AGC LI3 RI3 Llq ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

2 0 2 3 1 2 -3 2
2 0 2 2 1 2 -3 2
2 0 2 3 I 2 -3 2
2 0 2 2 1 2 -3 2
2 0 2 1 1 2 -3 2
2 0 2 3 1 2 -3 2
2 0 2 2 1 2 -3 2
2 0 2 1 1 2 -3 2

3 2 -1 -I 3 1 1
2 2 -1 -1 3 1 3
3 2 -1 -1 3 1 -4
2 2 -1 -1 3 1 1
1 2 -1 -1 3 1 3

3 2 -I -I 3 I -4

2 2 -1 -1 3 1 1
1 2 -1 -1 3 1 0

AGS AGC LI3 RI3 LI4 ISB IML LQ1RQ1LQ4 QSB QML ADD AER TIR
3 -1 4 1 3 1 2 -3 -q 3 13 0 1 3

3 o 1 2 3 -1 4 1
3 0 1 1 3 -1 4 1
3 0 1 2 3 -1 q 1
3 o 1 1 3 -1 4 1
3 O 1 3 3 -1 q 1
3 O 1 2 3 -1 4 1

2 1 2 -3 -q 3 3
1 1 2 -3 -q 3 -4
2 1 2 -3 -4 3 1
1 1 2 -3 -q 3 3
3 1 2 -3 -4 3 -q
2 1 2 -3 -4 3 1

3 0 I I 3 -I 4 I I I 2 -3 -q 3 3

AGS AGC LI3 RI3 LI4 ISB It,E. LQI RQI LQ4 QSB QML ADD AER TIR

q 0 3 3 2 -1 -1 3 3 3 -1 q 1 -1 1
4 0 3

4 0 3

q 0 3
q 0 3

4 0 3

2 2 -I -I 3 2 3 -I 4 I -I 3

I 2 -I -I 3 I 3 -I 4 I -I -4

3 2 -I -I 3 3 3 -I 4 I -I I
I 2 -I -I 3 I 3 -I 4 I -I 3

3 2 -1 -I 3 3 3 -I q 1 -1 -4
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4 0 3 2 2 -I -I 3 2 3 -I 4 I -I I

4 o 3 I 2 -I -I 3 I 3 -I 4 I -I 3
AGS AGC LI3 RZ3 LZ4 ZSB IML LQI RQI LQ4 QSB QML ADD AER TIR

5 0 2 3 1 2 -3 2
5 0 2 2 1 2 -3 2
5 0 2 1 1 2 -3 2
5 0 2 3 1 2 -3 2
5 0 2 2 1 2 -3 2
5 0 2 3 1 2 -3 2
5 0 2 2 1 2 -3 2
5 0 2 1 1 2 -3 2

3 2 -1 -1 3 -3 1
2 2 -1 -1 3 -3 3
1 2 -1 -1 3 -3 -q
3 2 -1 -1 3 -3 1
2 2 -I -I 3 -3 3
3 2 -I -I 3 -3 -4
2 2 -1 -1 3 -3 1
1 2 -I -1 3 -3 3

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
6 0 1 3 3 -1 4 1
6 0 1 2 3 -1 4 1
6 0 1 1 3 -1 4 1
6 0 1 3 3 -1 4 1
6 0 1 2 3 -1 4 1
6 0 1 1 3 -1 4 1
6 0 1 2 3 -1 4 1
6 0 1 1 3 -1 4 1

3 I 2 -3 -4 4 I

2 I 2 -3 -4 4 3

I 1 2 -3 -q 4 -4

3 I 2 -3 -q 4 I

2 I 2 -3 -q 4 3

1 1 2 -3 -4 4 -4

2 1 2 -3 -4 4 1
1 1 2 -3 -4 4 3

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

7 0 3 3 2 -I -I 3

7 0 3 2 2 -I -I 3

7 0 3 I 2 -I -I 3

7 O 3 3 2 -I -I 3

7 0 3 2 2 -I -I 3
7 0 3 1 2 -1 -1 3

7 0 3 3 2 -1 -1 3

7 0 3 1 2 -1 -1 3

3 3 -1 4 1 -1 1
2 3 -1 4 1 -1 3
1 3 -1 4 1 -1 -4
3 3 -1 4 1 -1 1
2 3 -1 4 1 -1 3
1 3 -1 4 1 -1 -4
3 3 -1 4 I -1 |
1 3 -1 4 1 -1 3

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
8 0 2 3 1 2 -3 2
8 0 2 2 1 2 -3 2
8 0 2 1 1 2 -3 2
8 0 2 3 1 2 -3 2
8 0 2 2 1 2 -3 2
8 0 2 1 1 2 -3 2
8 0 2 3 1 2 -3 2
8 0 2 2 1 2 -3 2

3 2 -1 -1 3 -3 1
2 2 -1 -1 3 -3 3
1 2 -1 -1 3 -3 -4
3 2 -1 -1 3 -3 1
2 2 -1 -1 3 -3 3
1 2 -1 -1 3 -3 -q
3 2 -1 -I 3 -3 I

2 2 -1 -1 3 -3 3
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

1 1 1 1 3 -1 4 1
1 1 1 2 3 -1 4 1
1 1 1 1 3 -1 4 1
1 1 1 3 3 -1 4 1
1 1 1 2 3 -1 4 1
1 1 1 1 3 -1 4 1
1 1 1 3 3 -1 4 1
1 1 1 2 3 -1 4 1

I I 2 -3 -4 4 I
2 I 2 -3 -4 4 3

I I 2 -3 -q 4 -4

3 I 2 -3 -4 4 I

2 I 2 -3 -q 4 3

I I 2 -3 -4 4 -4
3 I 2 -3 -4 q I

2 I 2 -3 -4 4 3

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

2 I 3
2 I 3
2 I 3
2 1 3
2 1 3
2 1 3

1 2 -1 -1 3 1 3 -1 4 1 -1 1
3 2 -1 -1 3 3 3 -1 4 1 -1 3
1 2 -1 -1 3 1 3 -1 4 1 -1 -4
3 2 -1 -1 3 3 3 -1 4 1 -1 1
2 2 -I -I 3 2 3 -I 4 I -I 3
I 2 -I -I 3 I 3 -I 4 I -I -4
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2 I 3 3 2 -I -I 3 3 3 -I 4 I -I
2 I 3 2 2 -I -I 3 2 3 -I 4 I -I 3
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

3 1 2 1 1 2 -3 2 1 2 -1 -1 3 2 2
3 I 2 3 I 2 -3 2 3 2 -I -I 3 2 3
3 1 2 2 1 2 -3 2 2 2 -1 -1 3 2 -4
3 1 2 3 1 2 -3 2 3 2 -1 -1 3 2 1
3 1 2 2 1 2 -3 2 2 2 -1 -1 3 2 3
3 1 2 1 1 2 -3 2 1 2 -1 -1 3 2 -4
3 1 2 3 1 2 -3 2 3 2 -1 -1 3 2 1
3 1 2 2 1 2 -3 2 2 2 -1 -1 3 2 3
AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 1

1 1 3 -1 4 1 1 1
1 3 3 -1 4 1 3 I
1 2 3 -1 4 1 2 1
1 1 3 -1 4 1 1 1
1 2 3 -1 4 1 2 1
1 1 3 -1 4 1 1 1
1 3 3 -1 4 I 3 I

1 2 3 -1 4 1 2 1

2 -3 -4 6 2
2 -3 -4 6 6

2 -3 -4 6 -4

2 -3 -4 6 I

2 -3 -4 6 3

2 -3 -4 6 -4
2 -3 -4 6 1
2 -3 -4 6 3

AGS AGC LI3 RI3 LI4 ISB IML LQI RQI LQ4 QSB QML ADD AER TIR

5 1 3 1 2 -1 -1
5 1 3 3 2 -1 -1
5 1 3 2 2 -1 -1
5 1 3 1 2 -1 -1
5 1 3 3 2 -1 -1
5 1 3 1 2 -1 -1
5 1 3 3 2 -1 -1
5 1 3 2 2 -1 -1

3 1 3 -1 q 1 -8 2
3 3 3 -1 4 1 -8 6
3 2 3 -1 4 1 -8 -8
3 1 3 -1 4 1 -8 1
3 3 3 -1 4 1 -8 3

3 I 3 -I 4 I -8 -4
3 3 3 -1 4 I -8 1
3 2 3 -1 4 I -8 3



-- 137





138

PRECEDING PAGE BLANK NOT FILMED

Appendbc F

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN THE
HARDWARE INTERFACE



139

/* Hardware behavioural model for data flow in the carrier

data and storage modules */

/* This program aims at governing the data flow among the

three modules come into play by interfacing them. The data

flow, control circuitry and interfacing is easily simulated
for the structure. */

#include <stdio.h>

main()

/* Initializations */

int read disable:O;

int l:1,en:O;

int count,m,k,i,q,J,adder_I,adder_Q;

int I_buf,Q_buf,I_inv,Q_inv;
int agc=O;
int h=1;

int sine,cosine,i_sample,q_sample,I_temp,Q_temp;
int d=I,s=I,x=O,ARE=O,ctr=O,SRE=O;

Int i bufferlatch[5],q_bufferlatch[5];

int multi5];

int add,sub,latch[3];

int srlatch s,srlatch_c;
FILE *fp,*fpl;

/* Define structures for memory */

struct ram d

{
int location I[9];

int location[Q[9];

};
struct ram d DDR;

struct rambuffer

{
int latch;
int location[9];

};
struct rambuffer ram_i[5],ram_q[5];

struct ram

{
int location[10];

};
struct ram Accumulation RAM_I,Accumulation_RAMQ;

struct doubleram

{
int location S[9];

int location[C[9];
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};
struct doubleram Storage_RAM;

struct tom

{
int locationS;

Int iocatlon_C;
};

struct rom Output ROH;

struct irom

{
int location I;

int location[Q;

};
struct irom Input_ROM;

/* Initializations for

memory structure */

for (J:l;J<:O;J++)
{
Storage_RAM.locatlon S[J]:O;
Storage RAM.location-C[J]:O;

Accumulation_RAM_I.location[J]=O;
Accumulation RAM Q.location[J]=O;

Input_ROM.lo_ati_n_I=O;

Input_ROH.locationQ=O;

Output_ROH.location_S=O;
Output_ROM.location_C=O;
}

for (i:1;i<:4;i++)

{
for (3:1;_<:8;J++)

{
ram_i[i].iocation[J]=O;
}

ram_i[i].latch:O;
}

for (i:l;i<:4;i++)

{
for (J:l;J<:8;j++)

{
ram_q[t].location[J]=0;
}

ram_q[l].latch=O;
}

for (J:l;J<9;J++)
{
DDR.location I[J]=O;
DDR.location_Q[J]=O;
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}
add=O;
sub=O;
latch[1]=O;

latch[2]=O;
/* Start main program */

printf("Enter the count of Address Generator for Samples Please");

printf( "\n" );

scanf ("%d", &count );

fp: fopen ("sam. dat", "r" );

fp I:fopen ("outlnt. dat", "w" );

fprlntf(fp1,"Enter the count of

fprint f(fpl, "\n" );
fprint f(fp I,"count" );

fprlntf(fpl, "\t");

fprlntf( fp I,"%d", count) ;

fpr int f(fpl, "\n" );

Address Generator for Samples Please");

for (k:1;k<:count;k++)
{
fscanf (fp, "%d", &i );

fscanf (fp, "%d", &q ); /* clock is negative */
/* Data flow in MCRM */

if (SRE::I)

{
Storage_RAM.locatlon C[s]=I temp;
Storage_RAM.locatlonZS[s]=QZtemp;

S:S+l;
if (s>8)

{
s:s-8;

SRE:O;
}

}
Output ROM.location C=adder I;
Output-ROM.location-S=adderZQ;

if (read_disable==1l
{
adder l=Accumulatlon RAM I.locatlon[d]+Input ROM.location I;

adderZQ=Accumulatlon[RAM[Q.iocatlon[d]+InpuCROM.loeatlon-_Q;

}
if (read_disable::O)

{
adder_I:InputROM.location_I;
adder Q=Input_ROM.locationQ;
h=h+17
if (h>8)

{
h=h-8;
read disable:l;
}

}
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Input_ROM.location l:i;
Input ROM.location[Q:q;
ram i[1].latch:i;

ram_q[1].latch:q;
for (m=2;m<4;m++)

{
ram_q[m].latch=ram_q[m-1].location[l];
}

for (m=2;m<4;m++)

{
ram i[m].latch=ram_i[m-1].location[l];
}

/* Additional buffer

interface needed for the modules */

/* clock is negative */

i bufferlatch[q]=i bufferlatch[3];

i-bufferlatch[3]=i-bufferlatch[2];

i-bufferlatch[2]=i-bufferlatch[1];

i-bufferlatch[1]=ram_i[3].location[l];

q_bufferlatch[q]=q_bufferlatch[3];

q_bufferlatch[3]=q_bufferlatch[2];
q bufferlatch[2]=q bufferlatch[1];

q_bufferlatch[1]=ram_q[3].location[l];
srlatch s=Storage RAM.location Sis-I];

srlatch3c:Storage3RAM.location3C[s-1];

/* Data in MDRM */

latch[|]:add;

latch[2]:sub;

add:mult[1]+mult[2];

sub=mult[3]-mult[4];

mult[1]=i sample*cosine;

mult[2]:q_sample*sine;

mult[3]=q sample*coslne;
mult[4]=i-sample*sine;

q_sample=q_bufferlatch[4];

l_sample:i_bufferlatch[4];

sine:srlatch s;

cosine=srlatch_c; /* clock is positive */

DDR.location I[l]:l bur;

DDR.locatlon[Q[l]=Q[buf;

l_buf=l_inv;
Q buf:Q tnv;
l-lnv:latch[1];

Q_inv:latch[2];

I_temp=OutputROM.location_C;

Q_temp:Output_ROM.location_S;

/* Control circuitry */

if (ARE::|)

{
Accumulation_RAM_I.location[d]=adder_I;
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Accumulation_RAM_Q.locatlon[d]=adder_Q;

d:d+1;
if (d>8)

{
d=d-8;
}

}

/* MRBS data flow */

for (m=1;m<4;m++)
{
ram i[m].location[1]=ram i[m].latch;

ram_q[m].location[l]=ram_q[m].latch;
}

/* Print the data flow */

fprintf(fpl,
"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s 13s %3s %3s %3s %3s
"AGS", "AGC", "ARI", "ARQ", "SRC", "SRS", "LI3", "RI3", "LQ3", "RQ3",

"B I4", "BQ4", "SLC", "SLS", "DIL", "DQL", "RID", "RQD" );

for (J=1;J<9;J++)
{
fprintf(fpl

fprintf(fpl

fprintf(fpl

fprlntf(fpl
fprintf(fpl

fprintf(fpl

fprintf(fpl

fprintf(fpl

fprlntf(fpl

fprlntf(fpl

fprintf(fpl
fprintf(fpl

,"%2d",I);

,"%4d",agc);
,"%4d",Accumulation RAH I.location[J]);

,"%4d",Accumulation-RAM-Q.1ocatlon[J]);

,"%4d",

,"%4d",

,"%4d",

,"%4d",

,"%4d",
,"%4d",

Storage RAM.location C[J]);

StorageZRAM.location-S[J]) ;
ram i[3].latch); -

ram-i[3].location[J]);

ram-q[3].latch);

ramZq[3].locatlon[J]);
,"%4d", i bufferlatch[4 ]);

,"%4d", qZbufferlatch[ 4 ]);

fprintf( fpl, "%4d", srlatch_c) ;

fprintf(fpl ,"%4d",srlatch s) ;
fprlntf(fp 1,"%4d", latch[ 17);

fprint f(fp I,"%4d", latch[ 2]);

fprlntf(fpl, "%4d" ,DDR. location I[J ]);

fprintf( fpl, "%4d", DDR. locat ionZQ[ J ]);

fprintf(fp I,"\n" );
}

i:I+I;
if (en==1)

{
if (i::4) SRE:I;

}
if (i::2) ARE:I;

if (1>8)
{
i:(i-8);
agc:agc+l;
if (ago::3) en:l;

/* Control circuitry */

%3s %3s %3s\n",
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if (age>3) agc=agc-4;
if (agc==O) en=O;
prlntf("\n");

}
if (agc==O)

{
if (i==2} read_dlsable=O;
}

}
fclose(fp);

fclose(fp;);
}
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INPUT FILE FOR HARDWARE INTERFACE

121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
111111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
121212121212121212121212121212
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OUTPUT FILE OF INTERFACE

Enter the count of Address Generator for Samples Please
count 50

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIq BQ4 SLC SLS DIL DQL RID RQD
2 O I 2 O O 0 O 0 0 O O O O O 0 0 O
2 0 O O O O O 0 O 0 0 O 0 O O O 0 O

2 O 0 0 0 O O 0 0 0 0 O O 0 0 0 0 O

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 O O 0 0 O 0 O O 0 O 0 O O O O 0 0

2 0 O 0 0 0 O 0 0 O O 0 O O O O 0 O

2 O O 0 O 0 O O O 0 0 0 O 0 0 0 O O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQQ SLC SLS DIL DQL RID RQD
3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 I 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS OIL DQL RID RQD
4 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 O O O O O O O O 0 0 0 O O O O O O

4 0 0 0 0 O 0 O 0 0 0 0 0 O 0 O 0 O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIg BQ4 SLC SLS DIL DQL RID RQD
5 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 Blq BQ4 SLC SLS DIL DQL RID RQD
6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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6 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0
6 O 0 0 0 0 0 0 0 0 O O 0 O O 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQg 3LC SLS DIL ]X)L RID ROD

7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
'7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIg BQq SLC SLS DIL DQL RID RQD

8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ 3RC SR.5 LI3 RI3 LQ3 RQ3 BIg BQ4 SLC SLS DIL DQL RID RQD
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIq BQ4 SLC SLS DIL DQL RID RQD
2 1 2 /.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AGS AGC ARI ARQ SRC $RS LI3 RI3 LQ3 RQ3 BIq BQq SLC SLS DIL DQL RID RQD

3 1 2 q 0 0 0 0 0 0 0 0 0 0 -0 0 0 0
3 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 I I 2 0 O O 0 O O O 0 O O O O O O

AGS AGC ARI ARQ SRC SEtS LI3 RI3 LQ3 RQ3 Big BQq SLC SLS DIL DQL RID RQD

q 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q 1 2 tl 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
,q 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tl 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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4 I I 2 0 0 O 0 O 0 0 0 0 0 0 0 0 0

4 I I 2 0 O O 0 O 0 0 O 0 0 O O 0 O

AGS AGC AR! ARQ $RC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
O 0 O O O O O O O O O O 05 1 2 q 0

5 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 2 0 0 0 O 0 0 O 0 0 O 0 0 O O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIg BQ4 SLC SLS DIL DQL RID RQD
O O O 0 O 0 O 0 0 O 0 0 O 06 1 2 4

6 1 2 tl 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 1 2 O O O O O 0 0 O O O 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQq $LC SLS DIL DQL RID RQD
O O 0 O 0 O O O O O O O O O7 1 2 4

? 1, 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
? 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
? 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
? 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
? 1 1 2 O 0 O O 0 0 O 0 0 O O O O 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIq BQ4 SLC SLS DIL DQL RID RQD

O O O O O 0 O O 0 O O 0 08 1 2 q 0

8 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 2 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 2 0 0 O 0 O 0 O 0 0 O 0 0 O 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BIq BQLISLC SLS DIL DQL RID RQD
0 1 1 2 2 0 0 0 0 0 0 0 01 2 2 /4 0

1 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 q 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
1 2 2 4 0 O I O 2 0 O O 0 O 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BZq BQq SLC SLS DIL DQL RID RQD
2 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
2 2 2 q 0 0 1 1 2 2 0 0 0 0 0 0 0 0
2 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
2 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
2 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
2 2 2 q 0 0 1 0 2 0 0 0 0 0 0 0 0 0
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2 2 2 4 0 0 I 0 2 0 0 0 0 0 0 0 0 0

2 2 2 4 O 0 I 0 2 0 0 0 0 0 0 0 0 O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DqL RID RQD

3 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 2 2 4 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
3 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
3 2 2 /4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
3 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
3 2 2 4 0 0 I 0 2 0 0 0 0 0 0 0 0 O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 Sl4 _4 SLC SLS DIL DQL RID ROD

4 2 3 6 0 0 1 1 2 2 0 0 0 0 0
4 2 3 6 0 0 1 1 2 2 0 0 0 0 0
4 2 3 6 0 0 1 1 2 2 0 0 O" 0 0
4 2 2 4 0 0 1 1 2 2 0 0 0 0 0
4 2 2 4 0 0 1 0 2 0 0 0 0 0 0
4 2 2 4 0 0 1 0 2 0 0 0 0 0 0
4 2 2 4 0 0 1 0 2 0 0 0 0 0 0
4 2 2 4 0 0 1 0 2 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD

5 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
5 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
5 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
5 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
5 2 2 4 0 0 1 1 2 2 0 0 0 0 0 0 0 0
5 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
5 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
5 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DqL RID RQD

6 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 2 4 0 0 1 1 2 2 0 0 0 0 0 0 0 0
6 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
6 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0
AGS AGC ARI ARQ $RC SRS LI3 RI3 LQ3 RQ3 BI4 Bq4 SLC SLS DIL I_L RID RQD

7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 2 4 0 0 1 1 2 2 0 0 0 0 0 0 0 0
7 2 2 4 0 0 1 0 2 0 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 Bq4 SLC SLS DIL DqL RID RQD

8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
8 2 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
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8 2 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0
8 2 2 4 O O I 1 2 2 0 O 0 0 0 0 0 O

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD

0 1 1 2 2 0 0 0 0 0 0 0 0I 3 3 6 0

I 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0

I 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0

I 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0
I 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0

I 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0

1 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
I 3 3 6 O 0 1 1 2 2 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
2 3 4 8 0 0 I I 2 2 0 0 O 0 0 0 0 O

2 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
2 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
2 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0
2 3 3 6 0 0 I I 2 2 O 0 0 0 0 O 0 0

2 3 3 6 0 0 I I 2 2 0 0 O 0 O 0 0 O

2 3 3 6 0 0 I I 2 2 0 0 O 0 O 0 0 0

2 3 3 6 0 0 I I 2 2 0 O 0 0 0 O 0 0

AGS AGC ARI ARQ SRC SRS LI3 R13 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
3 3 4 8 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 3 4 8 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 3 3 6 o 0 I I 2 2 o 0 o o 0 o o o

3 3 3 6 0 0 I I 2 2 0 o o 0 o o o o

3 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0
3 3 3 6 0 0 I I 2 2 0 0 0 0 0 0 0 0
3 3 3 6 0 0 1 1 2 2 0 0 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 R13 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
4 3 4 8 4 8 I I 2 2 I 2 4 8 0 O 0 0

4 3 4 8 0 0 I I 2 2 I 2 4 8 .0 0 0 0
4 3 4 8 0 0 I I 2 2 I 2 4 8 0 0 0 0

4 3 3 6 0 0 I I 2 2 I 2 4 8 0 0 0 0

4 3 3 6 0 0 I I 2 2 I 2 4 8 0 0 0 0

4 3 3 6 0 0 I I 2 2 I 2 4 8 0 0 0 0

4 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0
4 3 3 6 0 0 1 1 2 2 1 2 4 8 0 o 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
5 3 4 8 4 8 1 1 2 2 1 2 4 8 o 0 o o
5 3 4 8 4 8 1 1 2 2 1 2 4 8 0 0 0 0
5 3 4 8 0 0 1 1 2 2 1 2 4 8 0 0 0 0
5 3 4 8 0 0 I 1 2 2 I 2 4 8 0 0 0 0
5 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0
5 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0
5 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0
5 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
6 3 4 8 4 8 I 1 2 2 I 2 4 8 0 0 0 0
6 3 4 8 4 8 1 1 2 2 1 2 4 8 0 0 0 o
6 3 4 8 4 8 1 1 2 2 1 2 4 8 0 0 0 o
6 3 4 8 0 0 I I 2 2 I 2 4 8 0 0 0 0

6 3 4 8 0 0 I I 2 2 I 2 4 8 0 0 0 0

6 3 3 6 0 0 I I 2 2 I 2 4 8 0 0 0 0
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6 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0
6 3 3 6 0 0 1 1 2 2 1 2 4 8 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD

7 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0
7 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

7 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

7 3 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
7 3 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0
7 3 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0
7 3 3 6 0 0 1 1 2 2 1 2 /4 8 20 0 0 0
7 3 3 6 0 0 I I 2 2 I 2 q 8 20 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD

8 3 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
8 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

8 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

8 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0
8 3 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

8 3 4 8 0 0 I I 2 2 I 2 4 8 20 0 0 0

8 3 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0
8 3 3 6 0 0 1 1 2 2 1 2 4 8 20 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
1 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 20 0
I 0 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

1 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
1 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
1 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
I 0 4 8 4 8 I I 2 2 I 2 4 8 20 0 0 0

1 0 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0
1 0 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0

AGS AGC ARI ARQ SRC 5RS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SL$ DIL DQL RID RQD

2 0 1 2 4 8 1 1 2 2 1 2 4 8 20 0 20 0
2 0 4 8 4 8 I I 2 2 I 2 4 8 20 0 20 0

2 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
2 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
2 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
2 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
2 0 4 8 4 8 1 1 2 2 1 2 4 8 20 0 0 0
2 0 4 8 0 0 1 1 2 2 1 2 4 8 20 0 0 0

AGS AGC ARI ARQ $RC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD

3 0 1 2 4 8 1 1 2 2 1 2 0 0 20 0 20 0
3 0 1 2 4 8 1 1 2 2 1 2 0 0 20 0 20 0
3 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 20 0
3 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0
3 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0
3 0 4 8 4 8 I I 2 2 I 2 0 0 20 0 0 0

3 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0
3 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC $LS DIL DQL RID RQD

4 0 1 2 4 8 1 1 2 2 1 2 0 0 20 0 20 0
4 0 1 2 4 8 1 1 2 2 1 2 0 0 20 0 20 0
4 0 1 2 4 8 1 1 2 2 1 2 0 0 20 0 20 0
4 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 20 0
4 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0
4 0 4 8 4 8 1 1 2 2 1 2 0 0 20 0 0 0
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4 0 4 8 4 8 I I 2 2 I 2 0 0 20 0 0 0

4 0 4 8 4 8 I I 2 2 I 2 0 0 20 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
8 1 1 2 2 1 2 0 0 20 0 20 05 0 I 2 4

5 0 I 2 4
5 0 I 2 4

5 0 I 2 4

5 0 4 8 4

5 0 4 8 4

5 0 4 8 4

5 0 4 8 4

8 1 1 2 2 1 2 0 0 20 0 20 0
8 1 1 2 2 1 2 0 0 20 0 20 0
8 1 1 2 2 1 2 0 0 20 0 20 0
8 1 1 2 2 1 2 0 0 20 0 20 0
8 1 1 2 2 1 2 0 0 20 0 0 0
8 1 1 2 2 1 2 0 0 20 0 0 0
8 1 1 2 2 1 2 0 0 20 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
4 8 1 1 2 2 1 2 0 0 0 0 20 06 0 1 2

6 0 I 2 4 8
6 0 I 2 4 8
6 0 I 2 4 8
6 0 I 2 4 8
6 0 4 8 4 8
6 0 4 8 4 8
6 0 4 8

1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 0 0

4 8 I I 2 2 I 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
8 1 1 2 2 1 2 0 0 0 0 20 07 0 I 2 4

7 0 I 2 4

7 0 I 2 4

7 0 I 2 4

7 0 I 2 4

7 0 I 2 4

7 0 4 8 4

7 0 4 8 4

8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
4 8 1 1 2 2 1 2 0 0 0 0 20 08 0 1 2

8 0 1 2
8 0 1 2
8 0 1 2
8 0 1 2
8 0 1 2
8 0 1 2
8 0 4 8

4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
8 1 1 2 2 1 2 0 0 0 0 0 01 1 1 2 4

1 1 1 2 4
1 1 1 2 4
1 1 1 2 4
1 1 1 2 4
1 1 1 2 4
1 1 1 2 4
1 1 1 2 4

8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 20 0
8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
2 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
2 1 1 2 4 8
2 1 1 2 4 8
2 1 1 2 4 8
2 1 1 2 4 8
2 1 1 2 4 8

1 1 2 2 1 2 0 0 0 0 0 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2. 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
1 1 2 2 1 2 0 0 0 0 20 0
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2 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
2 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0

AG3 AGC ARI ARQ SRC SP3 LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
3 1 2 q 4 8 1 1 2 2 1 2 0 0 0 0 0 0
3 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
3 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 0 0
3 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
3 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
3 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 20 0
3 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
3 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SR5 LI3 RZ3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
4 1 2 4 q 8 1 1 2 2 1 2 0 0 0 0 0 0
4 1 2 q q 8 1 1 2 2 1 2 0 0 0 0 0 0
4 1 2 4 q 8 1 1 2 2 1 2 0 0 0 0 0 0
4 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 0 0
4 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
4 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 0 0
AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 I_4 SLC SLS DIL DQL RID RQD

5 1 2 q q 8 1 1 2 2 1 2 0 0 0 0 0 0
5 1 2 q 4 8 1 1 2 2 1 2 0 0 0 0 0 0
5 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
5 1 2 4 q 8 1 1 2 2 1 2 0 0 0 0 0 0
5 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0
5 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
5 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 20 0
5 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQq SLC SLS DIL DQL RID RQD
6 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 2 q 4 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 2 4 q 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0
6 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 20 0
6 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID ROD

? 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 2 3 4 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 1 2 q 8 1 1 2 2 1 2 0 0 0 0 0 0
7 1 1 2 4 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AC,C ARI ARQ $RC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
8 1 2 4 q 8 1 1 2 2 1 2 0 0 0 0 0 0
8 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
8 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
8 1 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
8 1 2 q q 8 1 1 2 2 1 2 0 0 0 0 0 0
8 1 2 3 4 8 1 1 2 2 1 2 0 0 0 0 0 0
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8 I 2 3 4 8 I I 2 2 I 2 0 0 0 0 0 0

8 I I 2 4 8 I I 2 2 I 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
1 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
1 2 2 4 .4 8 1 1 2 2 1 2 0 0 0 0 0 0
1 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
1 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
1 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
I 2 2 3 4 8 I I 2 2 I 2 0 0 0 0 0 0

1 2 2 3 4 8 1 1 2 2 1 2 0 0 0 0 0 0
1 2 2 3 4 8 1 1 2 2 1 2 0 0 0 0 0 0

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQ4 SLC SLS DIL DQL RID RQD
2 2 3 5 4 8 I I 2 2 I 2 0 0 0 0 0 0
2 2 2 4 4 8 I I 2 2 I 2 0 0 0 0 0 0

2 2 2 4 4 8 I I R 2 I 2 0 0 0 0 0 0

2 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
2 2 2 4 4 8 1 1 2 2 1 2 0 0 0 0 0 0
2 2 2 3 4 8 I I 2 2 I 2 0 0 0 0 0 0

2 2 2 3 4 8 1 1 2 2 1 2 0 0 0 0 0 0
2 2 2 3 4 8 I I 2 2 I 2 0 0 0 0 0 0
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Appendix G

A PROGRAM FOR THE MAPPING OF 2 CHANNEL_ ON A BINARY HYPERCUBE FOR
MODEL-I
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-- This is a program for simulation of 32 simultaneous

-- voice channels. Each channel has q tasks operating in parallel
-- or pipeline as in Model-I. In this program each task is assumed

-- to be assigned to a processor. Therefore each hypercube has

-- 2 channels assigned to it. We need 16 hypercubes for this purpose.

with math_llb;

with text_io;

procedure demod_hypercube is
use text io;
type rea_ is new float;

package my_real is new float_io(real);

use my_real;
package mathl is new math_lib(real);
use mathl;

package tntl_io is new integer_io(integer);
use tntl to;

count: integer;

input_buffer : file_type;

output_buffer : file_type;

I_sample, Q_sample : real;

-- Define the tasks in parallel or pipeline

task type each carrier I is

entry sample (In_s,-Qn_s : in real; Channel_no : in
end;

integer);

task type each carrier 2 is

entry sample_data(In data,Qn_data: in real;channel: in integer);

entry new_sample(newSI,new._Q : in real; ch: In integer);
end;

task type eachtiming is

entry samples (I_sample, Q_sample : in real; channel : in Integer);
end;

task type each data recovery is

entry phaseTl_pa_t,q_part: in real; channel : in integer);
end;

-- Define an array of parallel tasks

multi carrier 2: array(1..32) of each carrier 2;

multiSdata_re_overy: array(1..32) of each_data_recovery;
multi carrier I: array(l..32) of each carrier I;

multlStimlng:-array(1.,32) of each_tlming; -

-- Code alloted to task Each Carrier-1

task body each carrier I is

new_In, new_Qn : real;
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updated_In, updated_Qn: real::O.O;

new_magnitude, new_phase : real;
m : real := 4.0;

type period Is array(1..16) of real;

romp_In, temp_Qn : period;
channel : integer;

begin

for i in I..16 loop

accept sample(In_s,Qn_s : in real; Channel no: in integer) do
romp_In(1) := In_s;
temp_Qn(i) := Qn s;

channel := channel_no;
end;

end loop;

for i in I..16 loop

new_magnitude := (romp_In(i) * temp_In(i) + temp_Qn(i) * temp_Qn(i));
new_magnitude := new_magnitude * new magnitude;

new_phase := m * atan(temp_Qn(1)7temp_In(i));

new_In := new_magnitude * cos (new_phase);

new Qn := new_magnitude * sin (new_phase);

:= new In + updated_In;
:: newZQn + updated_Qn;

updated_In

updated_Qn
end loop;

multi_carrler_2(channel).new_sample(updated_In,updated_Qn,channel);
end;

-- Code assigned to task Each Carrier 2

task body each carrier 2 is

updated_In,updated_Qn: real;

output_In,output_Qn,carrier_phase: real;
sine_output, cosine_output:real;
channel: integer;

type period Is array(1..16) of real;

my_In,my_Qn, dlgital_I : period;
ch: integer;

begin
for t in 1..16 loop

accept sample_data (In data, Qn_data : in real; channel: in integer) do
my_In(1) := In_data?

my_Qn(1) :: Qn_data;
oh :: channel;

end;

end loop;

accept new_sample( new I, new_Q : In real; oh: in integer) do
updated_In:= new_I;-

updated_Qn:: new_Q;
channel := oh;

end;

output_In

output_Qn

carrier_phase

:: updated_In/16.0;
:: updated Qn/16.0;

:: (l.O/4.0)*atan(output_Qn/output_In);
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slne_output :: sin (carrier_phase);

cosine_output :: cos (carrier_phase);

for i in I..16 loop

my_In(i) :: my_In(i)*coslne_output + my_Qn(i)*sine_output;

my_Qn(i) :: my_Qn(i)*cosine_output - my_In(i)Usine_output;

end loop;

for i in I..16 loop

multi data recovery(channel).phase(my In(1),my Qn(i),channel);

multiZtiming(channel).samples(my_In(i_,my_Qn(i_,channel);

end loop;

end;

-- Code assigned to Each_timing

task body each_timing is

Un, I_Un, Q_Un : real;

Wn : real := 0.0;

type estimate is array(1..16) of real;

in between I, in_between_Q : estimate;

ch?integer7

begin

for i in I..16 loop

accept samples(I_sample, Q_sample : in real; channel: in integer) do

in between I(i) := I_sample;

inZbetween-Q(i)_ := Q_sample;

ch := channel;

end;

end loop;

for i in I..16 loop

if (i mod 2)= I and i < 15 then

I Un := (in between I(i)- in between I(i+2))*in between I(i+1);

Q-Us := (in-between-Q(i)- in_between_Q(i+2))*inZbetweenZQ(i+1);

Un := I Un + Q_Un7

Wn :: Wn + Un;

new line;

put_"Thls is timing of ");

put(ch);

put(" channel");

put(wn);

new line;

end if7

end loop;

end;

-- Code assigned to Each_data_recovery

task body each_data_recovery is

type period is array(1..16) of real;

my In,my_Qn, digital_I, dtgital_Q : period;

ch: integer;

begin

for i in I..16 loop

accept phase(i part, q_part: in real; channel: in integer) do

dlgltal_I(i) :=i_part;
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digital Q(i) ::q_part;

ch :: channel;

end;

end loop;
for i in I..16 loop

new line(2);

put["This is I data of channel");

put(ch);

if dlgital_I(i) > 0.0 then

digital_I(i) := 1.0;
else

digital I(i) := 0.0;

end if;

put(digital_I{i));

new line;

put["This is Q data of channel");

put(ch);

if digital_Q(i) > 0.0 then

digital_Q(i) := 1.0;

else

dlgital Q(i) :: 0.0;

end if;

put(digital_Q(i));

end loop;

new_line;

end;

-- Main program sets off the tasks of several channels to

-- operate in parallel or pipeline.

-- It calls the tasks for 32 channels. It gets the input

-- from a buffer called "samples.ada" and transfers data to the

-- tasks which operate on this data.

begin

open(input_buffer,ln_file,"samples.ada");
for k in I..16 loop

count::1;

while not(end_of_file(input_buffer))and count <= 32 loop

get(input_buffer,I_sample);

get(input_buffer,Q_sample);

multi carrier 1(count).sample(I_sample,Q_sample,count);

multl-carrier-2(count).sample_data(I_sample,Q_sample,count);

count?:count+_;

end loop;

end loop;

close(input_buffer);

end;
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A PROGRAM

Appendix H

FOR LOAD BALANCED PROCESSING OF 2 CI4_ANT_LS ON A BINARy
HYPERCUBE FOR MODEL-II._
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-- This is a program for simulation of 32 channels. It has
-- 4 tasks operate in parallel or pipeline for each channel.

-- The tasks are assigned such that they have nearly equal amount

-- of operations (load balancing).

with math_lib;
with text io;

procedure-sigma_demod is

use text io;
type real is new float;

package my_real is new float_io(real);

use my_real;
package mathl is new math llb(real);

use mathl;

package Int1_io is new integer_io(integer);

use int1_lo;

count: integer;

input_buffer : file_type;
output_buffer : file_type;

I_sample, Q_sample : real;

-- Define the tasks for channel

task type each carrier Ii is
entry sample_i (In_s, Qn_s : in real; Channel_no : in

end;

integer);

task type each_carrier_lq is

entry sample_q (In_s, Qn_s : in real; Channel_no : in

end;

integer);

task type each carrier 2 is

entry sample_data(In data,Qn_data: in real;channel: in integer);

entry new_sample_i(new_I : in real; ch: in integer);

entry new_sample_q(new_Q : in real; ch: in integer);

end;

task type each_timing is
entry samples (I_sample, Q_sample : in real; channel : in integer);

end;

-- Define the maximum channel array in the system

multi carrier 2: array(1..32) of each_carrier_2;
multi-carrier-li : array(1..32) of each carrier_li;

multi-carrier_lq : array(1..32) of each_carrier_lq;

multiZtiming: array(1..32) of each_timing;

-- Define code for each carrier Ii

task body each carrier li is

new_In, newZQn : real;
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updated_In, updated_Qn: real::0.O;

new_magnitude, new_phase : real;

m : real := 4.0;

type period is array(1..16) of real;

temp_In, temp_Qn : period;

channel : integer;

begin

for i in I..16 loop

accept sample_l(In s,Qn_s : in real; Channel no: in integer) do

temp_In(i) :: In s;

temp_Qn(i) :: Qn-s;

channel :: channel_no;

end;

end loop;

for i in I..16 loop

new_magnitude :: (temp_In(i) * temp_In(i) + temp_Qn(i) * temp_Qn(i));

new_magnltude :: new_magnltude * new_magnltude;

new_phase :: m * atan(temp_Qn(1)/temp_In(1));

new In :: new_magnltude * cos (new_phase);

updated_In := new_In + updated_In;

end loop;

multi_carrler_2(channel).new_sample_i(updated_In,channel);

end;

-- Define code for each_carrler_lq

task body each carrier_lq is

new_In, new_Qn : real;

updated_In, updated_Qn: real::O.O;

new_magnitude, new_phase : real;

m : real := 4.0;

type period is array(1..16) of real;

temp_In, temp_Qn : period;

channel : integer;

begin

for i in I..16 loop

accept sample_q(In_s,Qn_s : in real; Channel_no: in integer) do

temp_In(i) := In_s;

temp_Qn(1) := Qn s;

channel • el_no.: chann

end;

end loop;

for i in I..16 loop

new_magnltude :: (temp_In(1) * temp_In(1) + temp_Qn(i) * temp_Qn(1));

new_magnltude :: new_magnitude * new_magnitude;

new_phase :: m * atan(temp_Qn(1)/temp_In(i));

new Qn :: new_magnitude * sin (new_phase);

updated_Qn := new_.Qn + updated_Qn;

end loop;

multi_carrler_2(channel).new_sample_q(updated_Qn,channel);

--The tasks each carrier Ii and each_carrier_lq operate in parallel.

-- Define code fur each__arrler_2. It needs input from both the

-- previous tasks.
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task body each carrier 2 is

updated_In,updated_Qn: real;

output_In,output_On,carrier_phase: real;

sine_output, cosine_output:real;

channel: integer;

type period is array(1..16) of real;

my_In,my_On, dlgital_I,dlgital_O : period;

oh: integer;

begin

for i in I..16 loop

accept sample_data (In_data, Qn_data : in real; channel: in integer) do

my_In(i) := In data;

my_Qn(1) := OnZdata;

ch := channel;

end;

end loop;

accept new_sample_i( new_I : in real; oh: in integer) do

updated_In:= new l;

channel := ch;

end;

accept new_sample q( new_Q : in real; oh: in integer) do

updated_Qn:= new_Q;

channel := oh;

end;

output_In

output_On

carrier_phase

sine_output

cosine_output

:: updated_In/16.0;

:: updated_Qn/16.0;

:: (1.0/4.0)*atan(output_On/output_In);

:: sin (carrier_phase);

:: cos (carrier_phase);

for i in I..16 loop

digltal_I(1) :: my_In(i)*cosine_output + my_On(i)*sine_output;

dlgital_Q(i) :: my_On(i)*cosine_output - my_In(i)*sine_output;

if digital I(i) > 0.0 then

my_In(IT :: 1.0;
else

my_In(1) :: 0.0;

end if;

put("channel");

put(oh);

new_line;

if digital O(i) > 0.0 then

my_On(IT :: 1.0;
else

my...Qn(i) :: 0.0;
end if;

put(my_In(1));

put(my_On(i));
end loop;

new llne;
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for i In I..16 loop

multi_timing(channel).samples(digital_l(1), dlgital_Q(i),channel);

end loop;

end;

-- Define code for each_timing. It needs input from each carrier_2.

-- These four tasks define the division of work among the processors

-- of a hypercube for each of the channel.

task body each_tlming is

Un, I_On, Q_Un : real;

Wn : real :: 0.0;

type estimate is array(1..16) of real;

in_between_I, in_between_Q : estimate;

oh:integer;

begin

for i in I..16 loop

accept samples(;_sample, Q_sample : in real; channel: in integer) do

in between I(i) := I_sample;

inZbetween-Q(1) :: Q_sample;

ch := channel;

end;

end loop;

for i In I..16 loop

if (i mod 2): I and i < 15 then

I Un := (in between I(i)- in between I([+2))*in_between_I(i+1);

Q[Un :: (in-between-_Q(i)- In_betweenZQ(i+2))*in_between_Q(i+1);

Un :: I Un + Q_Un;
Wn :: Wn + Un;

new llne;

put["Thls is timing of ");

put(oh);

put(" channel");

put(wn);

new llne;

end if?

end loop;

end;

-- The main program is the front end system. It picks up the data

-- from a buffer for each channel and starts tasks which operate

-- in parallel or pipeline. The tasks each carrier Ii and

-- each_carrier_lq operate In parallel. Their input Is needed by

-- task each carrier 2. The output of this task is used by the

-- task each[timlng.-

begin

open(input_buffer,in_file,"samples.ada");

for k in I..16 loop -- samples

count:=1;

while not(end_of_file(Input_buffer))and count <= 32 loop --channels

get(Input_buffer,I_sample);

get(input_buffer,Q_sample);
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multi carrier 11(count).sample_i(I_sample,O_sample,count);

multl-carrler-lq(count).sample_q(I_sample,Q_sample,count);
multl-earrler-2(count).sample_data(I_sample,Q_sample,count);
countT=count+_;

end loop;

end loop;

close(Input_buffer);

end;
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